About: Abstract This paper uses the exploratory spatial data analysis and the geodetector method to analyze the spatial and temporal differentiation characteristics and the influencing factors of the COVID-19 (corona virus disease 2019) epidemic spread in mainland China based on the cumulative confirmed cases, average temperature, and socio-economic data. The results show that: (1) the epidemic spread rapidly from January 24 to February 20, 2020, and the distribution of the epidemic areas tended to be stable over time. The epidemic spread rate in Hubei province, in its surrounding, and in some economically developed cities was higher, while that in western part of China and in remote areas of central and eastern China was lower. (2) The global and local spatial correlation characteristics of the epidemic distribution present a positive correlation. Specifically, the global spatial correlation characteristics experienced a change process from agglomeration to decentralization. The local spatial correlation characteristics were mainly composed of the‘high-high’ and ‘low-low’ clustering types, and the situation of the contiguous layout was very significant. (3) The population inflow from Wuhan and the strength of economic connection were the main factors affecting the epidemic spread, together with the population distribution, transport accessibility, average temperature, and medical facilities, which affected the epidemic spread to varying degrees. (4) The detection factors interacted mainly through the mutual enhancement and nonlinear enhancement, and their influence on the epidemic spread rate exceeded that of single factors. Besides, each detection factor has an interval range that is conducive to the epidemic spread.   Goto Sponge  NotDistinct  Permalink

An Entity of Type : fabio:Abstract, within Data Space : covidontheweb.inria.fr associated with source document(s)

AttributesValues
type
value
  • Abstract This paper uses the exploratory spatial data analysis and the geodetector method to analyze the spatial and temporal differentiation characteristics and the influencing factors of the COVID-19 (corona virus disease 2019) epidemic spread in mainland China based on the cumulative confirmed cases, average temperature, and socio-economic data. The results show that: (1) the epidemic spread rapidly from January 24 to February 20, 2020, and the distribution of the epidemic areas tended to be stable over time. The epidemic spread rate in Hubei province, in its surrounding, and in some economically developed cities was higher, while that in western part of China and in remote areas of central and eastern China was lower. (2) The global and local spatial correlation characteristics of the epidemic distribution present a positive correlation. Specifically, the global spatial correlation characteristics experienced a change process from agglomeration to decentralization. The local spatial correlation characteristics were mainly composed of the‘high-high’ and ‘low-low’ clustering types, and the situation of the contiguous layout was very significant. (3) The population inflow from Wuhan and the strength of economic connection were the main factors affecting the epidemic spread, together with the population distribution, transport accessibility, average temperature, and medical facilities, which affected the epidemic spread to varying degrees. (4) The detection factors interacted mainly through the mutual enhancement and nonlinear enhancement, and their influence on the epidemic spread rate exceeded that of single factors. Besides, each detection factor has an interval range that is conducive to the epidemic spread.
Subject
  • Epidemiology
  • Southeastern Europe
  • Scientific modeling
  • Nonlinear systems
  • Economic data
part of
is abstract of
is hasSource of
Faceted Search & Find service v1.13.91 as of Mar 24 2020


Alternative Linked Data Documents: Sponger | ODE     Content Formats:       RDF       ODATA       Microdata      About   
This material is Open Knowledge   W3C Semantic Web Technology [RDF Data]
OpenLink Virtuoso version 07.20.3229 as of Jul 10 2020, on Linux (x86_64-pc-linux-gnu), Single-Server Edition (94 GB total memory)
Data on this page belongs to its respective rights holders.
Virtuoso Faceted Browser Copyright © 2009-2024 OpenLink Software