Facets (new session)
Description
Metadata
Settings
owl:sameAs
Inference Rule:
b3s
b3sifp
dbprdf-label
facets
http://dbpedia.org/resource/inference/rules/dbpedia#
http://dbpedia.org/resource/inference/rules/opencyc#
http://dbpedia.org/resource/inference/rules/umbel#
http://dbpedia.org/resource/inference/rules/yago#
http://dbpedia.org/schema/property_rules#
http://www.ontologyportal.org/inference/rules/SUMO#
http://www.ontologyportal.org/inference/rules/WordNet#
http://www.w3.org/2002/07/owl#
ldp
oplweb
skos-trans
virtrdf-label
None
About:
Airflow recovery from thoracic and abdominal movements using Synchrosqueezing Transform and Locally Stationary Gaussian Process Regression
Goto
Sponge
NotDistinct
Permalink
An Entity of Type :
schema:ScholarlyArticle
, within Data Space :
covidontheweb.inria.fr
associated with source
document(s)
Type:
Academic Article
research paper
schema:ScholarlyArticle
New Facet based on Instances of this Class
Attributes
Values
type
Academic Article
research paper
schema:ScholarlyArticle
isDefinedBy
Covid-on-the-Web dataset
title
Airflow recovery from thoracic and abdominal movements using Synchrosqueezing Transform and Locally Stationary Gaussian Process Regression
Creator
Chung, Yu-Min
Huang, Whitney
Mandel, Jeff
Wang, Yu-Bo
Wu, Hau-Tieng
source
ArXiv
abstract
Airflow signal encodes rich information about respiratory system. While the gold standard for measuring airflow is to use a spirometer with an occlusive seal, this is not practical for ambulatory monitoring of patients. Advances in sensor technology have made measurement of motion of the thorax and abdomen feasible with small inexpensive devices, but estimation of airflow from these time series is challenging. We propose to use the nonlinear-type time-frequency analysis tool, synchrosqueezing transform, to properly represent the thoracic and abdominal movement signals as the features, which are used to recover the airflow by the locally stationary Gaussian process. We show that, using a dataset that contains respiratory signals under normal sleep conditions, an accurate prediction can be achieved by fitting the proposed model in the feature space both in the intra- and inter-subject setups. We also apply our method to a more challenging case, where subjects under general anesthesia underwent transitions from pressure support to unassisted ventilation to further demonstrate the utility of the proposed method.
has issue date
2020-08-11
(
xsd:dateTime
)
has license
arxiv
sha1sum (hex)
e1687e42df5cf087c7c2a870ec7aa531a6de40c3
resource representing a document's title
Airflow recovery from thoracic and abdominal movements using Synchrosqueezing Transform and Locally Stationary Gaussian Process Regression
resource representing a document's body
covid:e1687e42df5cf087c7c2a870ec7aa531a6de40c3#body_text
is
schema:about
of
named entity 'model'
named entity 'measurement'
named entity 'Advances'
named entity 'recover'
named entity 'sensor'
»more»
◂◂ First
◂ Prev
Next ▸
Last ▸▸
Page 1 of 5
Go
Faceted Search & Find service v1.13.91 as of Mar 24 2020
Alternative Linked Data Documents:
Sponger
|
ODE
Content Formats:
RDF
ODATA
Microdata
About
OpenLink Virtuoso
version 07.20.3229 as of Jul 10 2020, on Linux (x86_64-pc-linux-gnu), Single-Server Edition (94 GB total memory)
Data on this page belongs to its respective rights holders.
Virtuoso Faceted Browser Copyright © 2009-2025 OpenLink Software