About: Abstract Human choline dehydrogenase (CHD) is located in the inner membrane of mitochondria primarily in liver and kidney and catalyzes the oxidation of choline to glycine betaine. Its physiological role is to regulate the concentrations of choline and glycine betaine in the blood and cells. Choline is important for regulation of gene expression, the biosynthesis of lipoproteins and membrane phospholipids and for the biosynthesis of the neurotransmitter acetylcholine; glycine betaine plays important roles as a primary intracellular osmoprotectant and as methyl donor for the biosynthesis of methionine from homocysteine, a required step for the synthesis of the ubiquitous methyl donor S-adenosyl methionine. Recently, CHD has generated considerable medical attention due to its association with various human pathologies, including male infertility, homocysteinuria, breast cancer and metabolic syndrome. Despite the renewed interest, the biochemical characterization of the enzyme has lagged behind due to difficulties in the obtainment of purified, active and stable enzyme. This review article summarizes the medical relevance and the physiological roles of human CHD, highlights the biochemical knowledge on the enzyme, and provides an analysis based on the comparison of the protein sequence with that of bacterial choline oxidase, for which structural and biochemical information is available.   Goto Sponge  NotDistinct  Permalink

An Entity of Type : fabio:Abstract, within Data Space : covidontheweb.inria.fr associated with source document(s)

AttributesValues
type
value
  • Abstract Human choline dehydrogenase (CHD) is located in the inner membrane of mitochondria primarily in liver and kidney and catalyzes the oxidation of choline to glycine betaine. Its physiological role is to regulate the concentrations of choline and glycine betaine in the blood and cells. Choline is important for regulation of gene expression, the biosynthesis of lipoproteins and membrane phospholipids and for the biosynthesis of the neurotransmitter acetylcholine; glycine betaine plays important roles as a primary intracellular osmoprotectant and as methyl donor for the biosynthesis of methionine from homocysteine, a required step for the synthesis of the ubiquitous methyl donor S-adenosyl methionine. Recently, CHD has generated considerable medical attention due to its association with various human pathologies, including male infertility, homocysteinuria, breast cancer and metabolic syndrome. Despite the renewed interest, the biochemical characterization of the enzyme has lagged behind due to difficulties in the obtainment of purified, active and stable enzyme. This review article summarizes the medical relevance and the physiological roles of human CHD, highlights the biochemical knowledge on the enzyme, and provides an analysis based on the comparison of the protein sequence with that of bacterial choline oxidase, for which structural and biochemical information is available.
subject
  • Kidney
  • Cellular respiration
  • Essential nutrients
part of
is abstract of
is hasSource of
Faceted Search & Find service v1.13.91 as of Mar 24 2020


Alternative Linked Data Documents: Sponger | ODE     Content Formats:       RDF       ODATA       Microdata      About   
This material is Open Knowledge   W3C Semantic Web Technology [RDF Data]
OpenLink Virtuoso version 07.20.3229 as of Jul 10 2020, on Linux (x86_64-pc-linux-gnu), Single-Server Edition (94 GB total memory)
Data on this page belongs to its respective rights holders.
Virtuoso Faceted Browser Copyright © 2009-2025 OpenLink Software