AttributesValues
type
value
  • Recent studies have suggested the necessity to incorporate traffic dynamics into the process of epidemic spreading on complex networks, as the former provides support for the latter in many real-world situations. While there are results on the asymptotic scope of the spreading dynamics, the issue of how fast an epidemic outbreak can occur remains outstanding. We observe numerically that the density of the infected nodes exhibits an exponential increase with time initially, rendering definable a characteristic time for the outbreak. We then derive a formula for scale-free networks, which relates this time to parameters characterizing the traffic dynamics and the network structure such as packet-generation rate and betweenness distribution. The validity of the formula is tested numerically. Our study indicates that increasing the average degree and/or inducing traffic congestion can slow down the spreading process significantly.
Subject
  • Epidemics
  • Networks
  • Graph theory
  • Network theory
  • Biological hazards
  • Concepts in physics
  • Graph families
  • Road traffic management
  • Road transport
  • Philosophy of thermal and statistical physics
  • Non-equilibrium thermodynamics
  • Transport reliability
  • Laws of thermodynamics
part of
is abstract of
is hasSource of
Faceted Search & Find service v1.13.91 as of Mar 24 2020


Alternative Linked Data Documents: Sponger | ODE     Content Formats:       RDF       ODATA       Microdata      About   
This material is Open Knowledge   W3C Semantic Web Technology [RDF Data]
OpenLink Virtuoso version 07.20.3229 as of Jul 10 2020, on Linux (x86_64-pc-linux-gnu), Single-Server Edition (94 GB total memory)
Data on this page belongs to its respective rights holders.
Virtuoso Faceted Browser Copyright © 2009-2025 OpenLink Software