About: Wearable sensing devices can provide high-resolution data useful to characterise and identify complex human behaviours. Sensing human social interactions through wearable devices represents one of the emerging field in mobile social sensing, considering their impact on different user categories and on different social contexts. However, it is important to limit the collection and use of sensitive information characterising individual users and their social interactions in order to maintain the user compliance. For this reason, we decided to focus mainly on physical proximity and, specifically, on the analysis of BLE wireless signals commonly used by commercial mobile devices. In this work, we present the SocializeME framework designed to collect proximity information and to detect social interactions through heterogeneous personal mobile devices. We also present the results of an experimental data collection campaign conducted with real users, highlighting technical limitations and performances in terms of quality of RSS, packet loss, and channel symmetry, and how they are influenced by different configurations of the user’s body and the position of the personal device. Specifically, we obtained a dataset with more than 820.000 Bluetooth signals (BLE beacons) collected, with a total monitoring of over 11 h. The dataset collected reproduces 4 different configurations by mixing two user posture’s layouts (standing and sitting) and different positions of the receiver device (in hand, in the front pocket and in the back pocket). The large number of experiments in those different configurations, well cover the common way of holding a mobile device, and the layout of a dyad involved in a social interaction. We also present the results obtained by SME-D algorithm, designed to automatically detect social interactions based on the collected wireless signals, which obtained an overall accuracy of 81.56% and F-score 84.7%. The collected and labelled dataset is also released to the mobile social sensing community in order to evaluate and compare new algorithms.   Goto Sponge  NotDistinct  Permalink

An Entity of Type : fabio:Abstract, within Data Space : covidontheweb.inria.fr associated with source document(s)

AttributesValues
type
value
  • Wearable sensing devices can provide high-resolution data useful to characterise and identify complex human behaviours. Sensing human social interactions through wearable devices represents one of the emerging field in mobile social sensing, considering their impact on different user categories and on different social contexts. However, it is important to limit the collection and use of sensitive information characterising individual users and their social interactions in order to maintain the user compliance. For this reason, we decided to focus mainly on physical proximity and, specifically, on the analysis of BLE wireless signals commonly used by commercial mobile devices. In this work, we present the SocializeME framework designed to collect proximity information and to detect social interactions through heterogeneous personal mobile devices. We also present the results of an experimental data collection campaign conducted with real users, highlighting technical limitations and performances in terms of quality of RSS, packet loss, and channel symmetry, and how they are influenced by different configurations of the user’s body and the position of the personal device. Specifically, we obtained a dataset with more than 820.000 Bluetooth signals (BLE beacons) collected, with a total monitoring of over 11 h. The dataset collected reproduces 4 different configurations by mixing two user posture’s layouts (standing and sitting) and different positions of the receiver device (in hand, in the front pocket and in the back pocket). The large number of experiments in those different configurations, well cover the common way of holding a mobile device, and the layout of a dyad involved in a social interaction. We also present the results obtained by SME-D algorithm, designed to automatically detect social interactions based on the collected wireless signals, which obtained an overall accuracy of 81.56% and F-score 84.7%. The collected and labelled dataset is also released to the mobile social sensing community in order to evaluate and compare new algorithms.
Subject
  • RSS
  • Bioethics
  • Emerging technologies
  • Technology in society
  • Technology forecasting
  • Computer-related introductions in 1999
  • Packets (information technology)
  • Transhumanism
  • Open formats
  • Technology development
  • XML-based standards
  • Futures studies
  • Computer file formats
  • Heraldic badges
  • Web syndication formats
part of
is abstract of
is hasSource of
Faceted Search & Find service v1.13.91 as of Mar 24 2020


Alternative Linked Data Documents: Sponger | ODE     Content Formats:       RDF       ODATA       Microdata      About   
This material is Open Knowledge   W3C Semantic Web Technology [RDF Data]
OpenLink Virtuoso version 07.20.3229 as of Jul 10 2020, on Linux (x86_64-pc-linux-gnu), Single-Server Edition (94 GB total memory)
Data on this page belongs to its respective rights holders.
Virtuoso Faceted Browser Copyright © 2009-2024 OpenLink Software