About: During the last two decades, researchers have developed robust systems for recombinant subunit vaccine production in plants. Stably and transiently transformed plants have particular advantages that enable immunization of humans and animals via mucosal delivery. The initial goal to immunize orally by ingestion of plant-derived antigens has proven difficult to attain, although many studies have demonstrated antibody production in both humans and animals, and in a few cases, protection against pathogen challenge. Substantial hurdles for this strategy are low-antigen content in crudely processed plant material and limited antigen stability in the gut. An alternative is intranasal delivery of purified plant-derived antigens expressed with robust viral vectors, especially virus-like particles. The use of pattern recognition receptor agonists as adjuvants for mucosal delivery of plant-derived antigens can substantially enhance serum and mucosal antibody responses. In this chapter, we briefly review the methods for recombinant protein expression in plants, and describe progress with human and animal vaccines that use mucosal delivery routes. We do not attempt to compile a comprehensive list, but focus on studies that progressed to clinical trials or those that showed strong indications of efficacy in animals. Finally, we discuss some regulatory concerns regarding plant-based vaccines.   Goto Sponge  NotDistinct  Permalink

An Entity of Type : fabio:Abstract, within Data Space : covidontheweb.inria.fr associated with source document(s)

AttributesValues
type
value
  • During the last two decades, researchers have developed robust systems for recombinant subunit vaccine production in plants. Stably and transiently transformed plants have particular advantages that enable immunization of humans and animals via mucosal delivery. The initial goal to immunize orally by ingestion of plant-derived antigens has proven difficult to attain, although many studies have demonstrated antibody production in both humans and animals, and in a few cases, protection against pathogen challenge. Substantial hurdles for this strategy are low-antigen content in crudely processed plant material and limited antigen stability in the gut. An alternative is intranasal delivery of purified plant-derived antigens expressed with robust viral vectors, especially virus-like particles. The use of pattern recognition receptor agonists as adjuvants for mucosal delivery of plant-derived antigens can substantially enhance serum and mucosal antibody responses. In this chapter, we briefly review the methods for recombinant protein expression in plants, and describe progress with human and animal vaccines that use mucosal delivery routes. We do not attempt to compile a comprehensive list, but focus on studies that progressed to clinical trials or those that showed strong indications of efficacy in animals. Finally, we discuss some regulatory concerns regarding plant-based vaccines.
subject
  • Virology
  • Immune system
  • Biomolecules
  • Pattern recognition receptors
  • Anatomy
  • »more»
part of
is abstract of
is hasSource of
Faceted Search & Find service v1.13.91 as of Mar 24 2020


Alternative Linked Data Documents: Sponger | ODE     Content Formats:       RDF       ODATA       Microdata      About   
This material is Open Knowledge   W3C Semantic Web Technology [RDF Data]
OpenLink Virtuoso version 07.20.3229 as of Jul 10 2020, on Linux (x86_64-pc-linux-gnu), Single-Server Edition (94 GB total memory)
Data on this page belongs to its respective rights holders.
Virtuoso Faceted Browser Copyright © 2009-2025 OpenLink Software