About: Transmission of the SAR-COV-2 virus that causes COVID-19 is largely driven by human behavior and person-to-person contact. By staying home, people reduce the probability of contacting an infectious individual, becoming infected, and passing on the virus. One of the most promising sources of data on time use is smartphone location data. We develop a time use driven proportional mixing SEIR model that naturally incorporates time spent at home measured using smartphone location data and allows people of different health statuses to behave differently. We simulate epidemics in almost every county in the United States. The model suggests that Americans' behavioral shifts have reduced cases in 55%-86% of counties and for 71%-91% of the population, depending on modeling assumptions. Resuming pre-epidemic behavior would lead to a rapid rise in cases in most counties. Spatial patterns of bending and flattening the curve are robust to modeling assumptions. Depending on epidemic history, county demographics, and behavior within a county, returning those with acquired immunity (assuming it exists) to regular schedules generally helps reduce cumulative COVID-19 cases. The model robustly identifies which counties would experience the greatest share of case reduction relative to continued distancing behavior. The model occasionally mischaracterizes epidemic patterns in counties tightly connected to larger counties that are experiencing large epidemics. Understanding these patterns is critical for prioritizing testing resources and back-to-work planning for the United States.   Goto Sponge  NotDistinct  Permalink

An Entity of Type : fabio:Abstract, within Data Space : covidontheweb.inria.fr associated with source document(s)

AttributesValues
type
value
  • Transmission of the SAR-COV-2 virus that causes COVID-19 is largely driven by human behavior and person-to-person contact. By staying home, people reduce the probability of contacting an infectious individual, becoming infected, and passing on the virus. One of the most promising sources of data on time use is smartphone location data. We develop a time use driven proportional mixing SEIR model that naturally incorporates time spent at home measured using smartphone location data and allows people of different health statuses to behave differently. We simulate epidemics in almost every county in the United States. The model suggests that Americans' behavioral shifts have reduced cases in 55%-86% of counties and for 71%-91% of the population, depending on modeling assumptions. Resuming pre-epidemic behavior would lead to a rapid rise in cases in most counties. Spatial patterns of bending and flattening the curve are robust to modeling assumptions. Depending on epidemic history, county demographics, and behavior within a county, returning those with acquired immunity (assuming it exists) to regular schedules generally helps reduce cumulative COVID-19 cases. The model robustly identifies which counties would experience the greatest share of case reduction relative to continued distancing behavior. The model occasionally mischaracterizes epidemic patterns in counties tightly connected to larger counties that are experiencing large epidemics. Understanding these patterns is critical for prioritizing testing resources and back-to-work planning for the United States.
Subject
  • Virology
  • Epidemics
  • United States
  • Biological hazards
  • Portable computers
part of
is abstract of
is hasSource of
Faceted Search & Find service v1.13.91 as of Mar 24 2020


Alternative Linked Data Documents: Sponger | ODE     Content Formats:       RDF       ODATA       Microdata      About   
This material is Open Knowledge   W3C Semantic Web Technology [RDF Data]
OpenLink Virtuoso version 07.20.3229 as of Jul 10 2020, on Linux (x86_64-pc-linux-gnu), Single-Server Edition (94 GB total memory)
Data on this page belongs to its respective rights holders.
Virtuoso Faceted Browser Copyright © 2009-2025 OpenLink Software