About: BACKGROUND: Non-pharmaceutical strategies are vital in curtailing impacts of influenza and have been intensively studied in public health. However, few strategies have explicitly utilized the weekend effect, which has been widely reported to be capable of reducing influenza infections. This study aims to explore six weekend-extension strategies against seasonal and pandemic flu outbreaks. METHODS: The weekend-extension strategies were designed to extend regular two-day weekend by one, two and three days, respectively, and in combination with either a continuous or discontinuous pattern. Their effectiveness was evaluated using an established agent-based spatially explicit simulation model in the urbanized area of Buffalo, NY, US. RESULTS: If the extensions last more than two days, the weekend-extension strategies can remarkably reduce the overall disease attack rate of seasonal flu. Particularly, a three-day continuous extension is sufficient to suppress the epidemic and confine the spread of disease. For the pandemic flu, the weekend-extension strategies only produce a few mitigation effects until the extensions exceed three days. Sensitivity analysis indicated that a compliance level above 75% is necessary for the weekend-extension strategies to take effects. CONCLUSION: This research is the first attempt to incorporate the weekend effect into influenza mitigation strategies. The results suggest that appropriate extensions of the regular two-day weekend can be a potential measure to fight against influenza outbreaks, while minimizing interruptions on normal rhythms of socio-economy. The concept of weekend extension would be particularly useful if there were a lack of vaccine stockpiles, e.g., in countries with limited health resources, or in the case of unknown emerging infectious diseases.   Goto Sponge  NotDistinct  Permalink

An Entity of Type : fabio:Abstract, within Data Space : covidontheweb.inria.fr associated with source document(s)

AttributesValues
type
value
  • BACKGROUND: Non-pharmaceutical strategies are vital in curtailing impacts of influenza and have been intensively studied in public health. However, few strategies have explicitly utilized the weekend effect, which has been widely reported to be capable of reducing influenza infections. This study aims to explore six weekend-extension strategies against seasonal and pandemic flu outbreaks. METHODS: The weekend-extension strategies were designed to extend regular two-day weekend by one, two and three days, respectively, and in combination with either a continuous or discontinuous pattern. Their effectiveness was evaluated using an established agent-based spatially explicit simulation model in the urbanized area of Buffalo, NY, US. RESULTS: If the extensions last more than two days, the weekend-extension strategies can remarkably reduce the overall disease attack rate of seasonal flu. Particularly, a three-day continuous extension is sufficient to suppress the epidemic and confine the spread of disease. For the pandemic flu, the weekend-extension strategies only produce a few mitigation effects until the extensions exceed three days. Sensitivity analysis indicated that a compliance level above 75% is necessary for the weekend-extension strategies to take effects. CONCLUSION: This research is the first attempt to incorporate the weekend effect into influenza mitigation strategies. The results suggest that appropriate extensions of the regular two-day weekend can be a potential measure to fight against influenza outbreaks, while minimizing interruptions on normal rhythms of socio-economy. The concept of weekend extension would be particularly useful if there were a lack of vaccine stockpiles, e.g., in countries with limited health resources, or in the case of unknown emerging infectious diseases.
Subject
  • Virology
  • Seasonality
  • Erie Canal
part of
is abstract of
is hasSource of
Faceted Search & Find service v1.13.91 as of Mar 24 2020


Alternative Linked Data Documents: Sponger | ODE     Content Formats:       RDF       ODATA       Microdata      About   
This material is Open Knowledge   W3C Semantic Web Technology [RDF Data]
OpenLink Virtuoso version 07.20.3229 as of Jul 10 2020, on Linux (x86_64-pc-linux-gnu), Single-Server Edition (94 GB total memory)
Data on this page belongs to its respective rights holders.
Virtuoso Faceted Browser Copyright © 2009-2024 OpenLink Software