About: Most countries are suffering severely from the ongoing covid-19 pandemic despite various levels of preventive measures. A common question is if and when a country or region will reach herd immunity $h$. The classical herd immunity level $h_C$ is defined as $h_C=1-1/R_0$, where $R_0$ is the basic reproduction number, for covid-19 estimated to lie somewhere in the range 2.2-3.5 depending on country and region. It is shown here that the disease-induced herd immunity level $h_D$, after an outbreak has taken place in a country/region with a set of preventive measures put in place, is actually substantially smaller than $h_C$. As an illustration we show that if $R_0=2.5$ in an age-structured community with mixing rates fitted to social activity studies, and also categorizing individuals into three categories: low active, average active and high active, and where preventive measures affect all mixing rates proportionally, then the disease-induced herd immunity level is $h_D=43/%$ rather than $h_C=1-1/2.5=60/%$. Consequently, a lower fraction infected is required for herd immunity to appear. The underlying reason is that when immunity is induced by disease spreading, the proportion infected in groups with high contact rates is greater than that in groups with low contact rates. Consequently, disease-induced immunity is stronger than when immunity is uniformly distributed in the community as in the classical herd immunity level.   Goto Sponge  NotDistinct  Permalink

An Entity of Type : fabio:Abstract, within Data Space : covidontheweb.inria.fr associated with source document(s)

AttributesValues
type
value
  • Most countries are suffering severely from the ongoing covid-19 pandemic despite various levels of preventive measures. A common question is if and when a country or region will reach herd immunity $h$. The classical herd immunity level $h_C$ is defined as $h_C=1-1/R_0$, where $R_0$ is the basic reproduction number, for covid-19 estimated to lie somewhere in the range 2.2-3.5 depending on country and region. It is shown here that the disease-induced herd immunity level $h_D$, after an outbreak has taken place in a country/region with a set of preventive measures put in place, is actually substantially smaller than $h_C$. As an illustration we show that if $R_0=2.5$ in an age-structured community with mixing rates fitted to social activity studies, and also categorizing individuals into three categories: low active, average active and high active, and where preventive measures affect all mixing rates proportionally, then the disease-induced herd immunity level is $h_D=43/%$ rather than $h_C=1-1/2.5=60/%$. Consequently, a lower fraction infected is required for herd immunity to appear. The underlying reason is that when immunity is induced by disease spreading, the proportion infected in groups with high contact rates is greater than that in groups with low contact rates. Consequently, disease-induced immunity is stronger than when immunity is uniformly distributed in the community as in the classical herd immunity level.
Subject
  • Prevention
  • Vaccination
  • Epidemiology
  • Preventive medicine
  • Pandemics
  • Medical terminology
  • Nursing specialties
  • 2019 disasters in China
  • 2019 health disasters
part of
is abstract of
is hasSource of
Faceted Search & Find service v1.13.91 as of Mar 24 2020


Alternative Linked Data Documents: Sponger | ODE     Content Formats:       RDF       ODATA       Microdata      About   
This material is Open Knowledge   W3C Semantic Web Technology [RDF Data]
OpenLink Virtuoso version 07.20.3229 as of Jul 10 2020, on Linux (x86_64-pc-linux-gnu), Single-Server Edition (94 GB total memory)
Data on this page belongs to its respective rights holders.
Virtuoso Faceted Browser Copyright © 2009-2024 OpenLink Software