About: Human to human transmissible infectious diseases spread in a population using human interactions as its transmission vector. The early stages of such an outbreak can be modeled by a graph whose edges encode these interactions between individuals, the vertices. This article attempts to account for the case when each individual entails in different kinds of interactions which have therefore different probabilities of transmitting the disease. The majority of these results can be also stated in the language of percolation theory. The main contributions of the article are: (1) Extend to this setting some results which were previously known in the case when each individual has only one kind of interactions. (2) Find an explicit formula for the basic reproduction number $R_0$ which depends only on the probabilities of transmitting the disease along the different edges and the first two moments of the degree distributions of the associated graphs. (3) Motivated by the recent Covid-19 pandemic, we use the framework developed to compute the $R_0$ of a model disease spreading in populations whose trees and degree distributions are adjusted to several different countries. In this setting, we shall also compute the probability that the outbreak will not lead to an epidemic. In all cases we find such probability to be very low if no interventions are put in place.   Goto Sponge  NotDistinct  Permalink

An Entity of Type : fabio:Abstract, within Data Space : covidontheweb.inria.fr associated with source document(s)

AttributesValues
type
value
  • Human to human transmissible infectious diseases spread in a population using human interactions as its transmission vector. The early stages of such an outbreak can be modeled by a graph whose edges encode these interactions between individuals, the vertices. This article attempts to account for the case when each individual entails in different kinds of interactions which have therefore different probabilities of transmitting the disease. The majority of these results can be also stated in the language of percolation theory. The main contributions of the article are: (1) Extend to this setting some results which were previously known in the case when each individual has only one kind of interactions. (2) Find an explicit formula for the basic reproduction number $R_0$ which depends only on the probabilities of transmitting the disease along the different edges and the first two moments of the degree distributions of the associated graphs. (3) Motivated by the recent Covid-19 pandemic, we use the framework developed to compute the $R_0$ of a model disease spreading in populations whose trees and degree distributions are adjusted to several different countries. In this setting, we shall also compute the probability that the outbreak will not lead to an epidemic. In all cases we find such probability to be very low if no interventions are put in place.
subject
  • Epidemiology
  • Parasitology
  • Infectious diseases
  • Graph theory
  • Percolation theory
part of
is abstract of
is hasSource of
Faceted Search & Find service v1.13.91 as of Mar 24 2020


Alternative Linked Data Documents: Sponger | ODE     Content Formats:       RDF       ODATA       Microdata      About   
This material is Open Knowledge   W3C Semantic Web Technology [RDF Data]
OpenLink Virtuoso version 07.20.3229 as of Jul 10 2020, on Linux (x86_64-pc-linux-gnu), Single-Server Edition (94 GB total memory)
Data on this page belongs to its respective rights holders.
Virtuoso Faceted Browser Copyright © 2009-2025 OpenLink Software