AttributesValues
type
value
  • Keyphrase, that concisely describe the high-level topics discussed in a document, are very useful for a wide range of natural language processing (NLP) tasks. Current popular supervised methods for keyphrase extraction commonly cannot effectively utilize the long-range contextual information in text. In this paper, we focus on how to effectively exploit the long-range contextual information to improve the keyphrase extraction performance. Specifically, we propose a multi-level memory network with the conditional random fields (CRFs), which allows to have unrestricted access to the long-range and local contextual information in text. We first design the multi-level memory network with sentence level and document level to enhance the text representation. Then, we integrate the multi-level memory network with the CRFs, which has an advantage in modeling the local contextual information. Compared with the recent state-of-the-art methods, our model can achieve better results through experiments on two datasets.
subject
  • Artificial intelligence
  • Computational fields of study
  • Natural language processing
  • Sociolinguistics
  • Computational linguistics
  • Speech recognition
  • Discourse analysis
  • Pragmatics
part of
is abstract of
is hasSource of
Faceted Search & Find service v1.13.91 as of Mar 24 2020


Alternative Linked Data Documents: Sponger | ODE     Content Formats:       RDF       ODATA       Microdata      About   
This material is Open Knowledge   W3C Semantic Web Technology [RDF Data]
OpenLink Virtuoso version 07.20.3229 as of Jul 10 2020, on Linux (x86_64-pc-linux-gnu), Single-Server Edition (94 GB total memory)
Data on this page belongs to its respective rights holders.
Virtuoso Faceted Browser Copyright © 2009-2025 OpenLink Software