AttributesValues
type
value
  • Smart environments and technology used for elder care, increases independent living time and cuts long-term care costs. A key requirement for these systems consists in detecting and informing about abnormal behavior in users’routines. In this paper, our objective is to automatically observe the elderly behavior over time and detect anomalies that may occur on the long term. Therefore, we propose a learning method to formalize a normal behavior pattern for each elderly people related to his Activities of Daily Living (ADL). We also adopt a temporal similarity score between activities that allows to detect behavior changes over time. In change behavior period we focus on each activity to detect anomalies. A use case with real datasets are promising.
Subject
  • Disability
  • Behavioural sciences
  • Caregiving
  • Medical terminology
  • Social constructionism
  • Elderly care
  • Medicare and Medicaid (United States)
part of
is abstract of
is hasSource of
Faceted Search & Find service v1.13.91 as of Mar 24 2020


Alternative Linked Data Documents: Sponger | ODE     Content Formats:       RDF       ODATA       Microdata      About   
This material is Open Knowledge   W3C Semantic Web Technology [RDF Data]
OpenLink Virtuoso version 07.20.3229 as of Jul 10 2020, on Linux (x86_64-pc-linux-gnu), Single-Server Edition (94 GB total memory)
Data on this page belongs to its respective rights holders.
Virtuoso Faceted Browser Copyright © 2009-2024 OpenLink Software