About: We developed a severe acute respiratory syndrome (SARS) subunit recombinant protein vaccine candidate based on a highyielding, yeast- engineered, receptor-binding domain (RBD219-N1) of the SARS beta-coronavirus (SARS-CoV) spike (S) protein. When formulated with Alhydrogel®, RBD219-N1 induced high-level neutralizing antibodies against both pseudotyped virus and a clinical (mouse-adapted) isolate of SARS-CoV. Here, we report that mice immunized with RBD219N1/Alhydrogel® were fully protected from lethal SARS-CoV challenge (0% mortality), compared to ~ 30% mortality in mice when immunized with the SARS S protein formulated with Alhydrogel®, and 100% mortality in negative controls. An RBD219-N1 formulation Alhydrogel® was also superior to the S protein, unadjuvanted RBD, and AddaVax (MF59-like adjuvant)-formulated RBD in inducing specific antibodies and preventing cellular infiltrates in the lungs upon SARS-CoV challenge. Specifically, a formulation with a 1:25 ratio of RBD219-N1 to Alhydrogel® provided high neutralizing antibody titers, 100% protection with non-detectable viral loads with minimal or no eosinophilic pulmonary infiltrates. As a result, this vaccine formulation is under consideration for further development against SARS-CoV and other emerging and re-emerging beta-CoVs such as SARS-CoV-2.   Goto Sponge  NotDistinct  Permalink

An Entity of Type : fabio:Abstract, within Data Space : covidontheweb.inria.fr associated with source document(s)

AttributesValues
type
value
  • We developed a severe acute respiratory syndrome (SARS) subunit recombinant protein vaccine candidate based on a highyielding, yeast- engineered, receptor-binding domain (RBD219-N1) of the SARS beta-coronavirus (SARS-CoV) spike (S) protein. When formulated with Alhydrogel®, RBD219-N1 induced high-level neutralizing antibodies against both pseudotyped virus and a clinical (mouse-adapted) isolate of SARS-CoV. Here, we report that mice immunized with RBD219N1/Alhydrogel® were fully protected from lethal SARS-CoV challenge (0% mortality), compared to ~ 30% mortality in mice when immunized with the SARS S protein formulated with Alhydrogel®, and 100% mortality in negative controls. An RBD219-N1 formulation Alhydrogel® was also superior to the S protein, unadjuvanted RBD, and AddaVax (MF59-like adjuvant)-formulated RBD in inducing specific antibodies and preventing cellular infiltrates in the lungs upon SARS-CoV challenge. Specifically, a formulation with a 1:25 ratio of RBD219-N1 to Alhydrogel® provided high neutralizing antibody titers, 100% protection with non-detectable viral loads with minimal or no eosinophilic pulmonary infiltrates. As a result, this vaccine formulation is under consideration for further development against SARS-CoV and other emerging and re-emerging beta-CoVs such as SARS-CoV-2.
Subject
  • Virology
  • Membrane biology
  • Fungus common names
  • Sarbecovirus
part of
is abstract of
is hasSource of
Faceted Search & Find service v1.13.91 as of Mar 24 2020


Alternative Linked Data Documents: Sponger | ODE     Content Formats:       RDF       ODATA       Microdata      About   
This material is Open Knowledge   W3C Semantic Web Technology [RDF Data]
OpenLink Virtuoso version 07.20.3229 as of Jul 10 2020, on Linux (x86_64-pc-linux-gnu), Single-Server Edition (94 GB total memory)
Data on this page belongs to its respective rights holders.
Virtuoso Faceted Browser Copyright © 2009-2024 OpenLink Software