About: Glycans are multi-branched sugars that are displayed from lipids and proteins. Through their diverse polysaccharide structures they can potentiate a myriad of cellular signaling pathways involved in development, growth, immuno-communication and survival. Not surprisingly, disruption of glycan synthesis is fundamental to various human diseases; including cancer, where aberrant glycosylation drives malignancy. Here, we report the discovery of a novel mannose-binding lectin, ML6, which selectively recognizes and binds to these irregular tumor-specific glycans to elicit potent and rapid cancer cell death. This lectin was engineered from gene models identified in a tropical rainforest tree root transcriptome and is unusual in its six canonical mannose binding domains (QxDxNxVxY), each with a unique amino acid sequence. Remarkably, ML6 displays antitumor activity that is >10(5) times more potent than standard chemotherapeutics, while being almost completely inactive towards non-transformed, healthy cells. This activity, in combination with results from glycan binding studies, suggests ML6 differentiates healthy and malignant cells by exploiting divergent glycosylation pathways that yield naïve and incomplete cell surface glycans in tumors. Thus, ML6 and other high-valence lectins may serve as novel biochemical tools to elucidate the glycomic signature of different human tumors and aid in the rational design of carbohydrate-directed therapies. Further, understanding how nature evolves proteins, like ML6, to combat the changing defenses of competing microorganisms may allow for fundamental advances in the way we approach combinatorial therapies to fight therapeutic resistance in cancer.   Goto Sponge  NotDistinct  Permalink

An Entity of Type : fabio:Abstract, within Data Space : covidontheweb.inria.fr associated with source document(s)

AttributesValues
type
value
  • Glycans are multi-branched sugars that are displayed from lipids and proteins. Through their diverse polysaccharide structures they can potentiate a myriad of cellular signaling pathways involved in development, growth, immuno-communication and survival. Not surprisingly, disruption of glycan synthesis is fundamental to various human diseases; including cancer, where aberrant glycosylation drives malignancy. Here, we report the discovery of a novel mannose-binding lectin, ML6, which selectively recognizes and binds to these irregular tumor-specific glycans to elicit potent and rapid cancer cell death. This lectin was engineered from gene models identified in a tropical rainforest tree root transcriptome and is unusual in its six canonical mannose binding domains (QxDxNxVxY), each with a unique amino acid sequence. Remarkably, ML6 displays antitumor activity that is >10(5) times more potent than standard chemotherapeutics, while being almost completely inactive towards non-transformed, healthy cells. This activity, in combination with results from glycan binding studies, suggests ML6 differentiates healthy and malignant cells by exploiting divergent glycosylation pathways that yield naïve and incomplete cell surface glycans in tumors. Thus, ML6 and other high-valence lectins may serve as novel biochemical tools to elucidate the glycomic signature of different human tumors and aid in the rational design of carbohydrate-directed therapies. Further, understanding how nature evolves proteins, like ML6, to combat the changing defenses of competing microorganisms may allow for fundamental advances in the way we approach combinatorial therapies to fight therapeutic resistance in cancer.
Subject
  • Carbohydrates
  • Ecosystems
  • Carbohydrate chemistry
  • Membrane biology
  • Rainforests
part of
is abstract of
is hasSource of
Faceted Search & Find service v1.13.91 as of Mar 24 2020


Alternative Linked Data Documents: Sponger | ODE     Content Formats:       RDF       ODATA       Microdata      About   
This material is Open Knowledge   W3C Semantic Web Technology [RDF Data]
OpenLink Virtuoso version 07.20.3229 as of Jul 10 2020, on Linux (x86_64-pc-linux-gnu), Single-Server Edition (94 GB total memory)
Data on this page belongs to its respective rights holders.
Virtuoso Faceted Browser Copyright © 2009-2024 OpenLink Software