About: Since first report of a novel coronavirus in December of 2019, the Coronavirus Disease 2019 (COVID-19) pandemic has crippled healthcare systems around the world. While many initial screening protocols centered around laboratory detection of the virus, early testing assays were thought to be poorly sensitive in comparison to chest computed tomography (CT), especially in asymptomatic disease. Coupled with shortages of reverse transcription polymerase chain reaction (RT-PCR) testing kits in many parts of the world, these regions instead turned to the use of advanced imaging as a first-line screening modality. Curiously, in contrast to the Severe Acute Respiratory Syndrome and Middle East Respiratory Syndrome epidemics, chest X-ray has not demonstrated optimal sensitivity to be of much utility in first-line screening protocols. Though current national and international guidelines recommend for the use of RT-PCR as the primary screening tool for suspected cases of COVID-19, institutional and regional protocols must consider local availability of resources when issuing universal recommendations. Successful containment and social mitigation strategies worldwide have been thus far predicated on unified governmental responses, though the underlying ideologies of these practices may not be widely applicable in many Western nations. As the strain on the radiology workforce continues to mount, early results indicate a promising role for the use of machine-learning algorithms as risk stratification schema in the months to come.   Goto Sponge  NotDistinct  Permalink

An Entity of Type : fabio:Abstract, within Data Space : covidontheweb.inria.fr associated with source document(s)

AttributesValues
type
value
  • Since first report of a novel coronavirus in December of 2019, the Coronavirus Disease 2019 (COVID-19) pandemic has crippled healthcare systems around the world. While many initial screening protocols centered around laboratory detection of the virus, early testing assays were thought to be poorly sensitive in comparison to chest computed tomography (CT), especially in asymptomatic disease. Coupled with shortages of reverse transcription polymerase chain reaction (RT-PCR) testing kits in many parts of the world, these regions instead turned to the use of advanced imaging as a first-line screening modality. Curiously, in contrast to the Severe Acute Respiratory Syndrome and Middle East Respiratory Syndrome epidemics, chest X-ray has not demonstrated optimal sensitivity to be of much utility in first-line screening protocols. Though current national and international guidelines recommend for the use of RT-PCR as the primary screening tool for suspected cases of COVID-19, institutional and regional protocols must consider local availability of resources when issuing universal recommendations. Successful containment and social mitigation strategies worldwide have been thus far predicated on unified governmental responses, though the underlying ideologies of these practices may not be widely applicable in many Western nations. As the strain on the radiology workforce continues to mount, early results indicate a promising role for the use of machine-learning algorithms as risk stratification schema in the months to come.
Subject
  • Therapy
  • Zoonoses
  • United States
  • Viral respiratory tract infections
  • COVID-19
  • Organizations established in 1948
  • Occupational safety and health
part of
is abstract of
is hasSource of
Faceted Search & Find service v1.13.91 as of Mar 24 2020


Alternative Linked Data Documents: Sponger | ODE     Content Formats:       RDF       ODATA       Microdata      About   
This material is Open Knowledge   W3C Semantic Web Technology [RDF Data]
OpenLink Virtuoso version 07.20.3229 as of Jul 10 2020, on Linux (x86_64-pc-linux-gnu), Single-Server Edition (94 GB total memory)
Data on this page belongs to its respective rights holders.
Virtuoso Faceted Browser Copyright © 2009-2024 OpenLink Software