About: Abstract Background The endolysosomal, non-selective cation channels, two-pore channels (TPCs) and mucolipins (TRPMLs), regulate intracellular membrane dynamics and autophagy. While partially compensatory for each other, isoform-specific intracellular distribution, cell-type expression patterns, and regulatory mechanisms suggest different channel isoforms confer distinct properties to the cell. Scope of review Briefly, established TPC/TRPML functions and interaction partners (‘interactomes’) are discussed. Novel TRPML3 interactors are shown, and a meta-analysis of experimentally obtained channel interactomes conducted. Accordingly, interactomes are compared and contrasted, and subsequently described in detail for TPC1, TPC2, TRPML1, and TRPML3. Major conclusions TPC interactomes are well-defined, encompassing intracellular membrane organisation proteins. TRPML interactomes are varied, encompassing cardiac contractility- and chaperone-mediated autophagy proteins, alongside regulators of intercellular signalling. General significance Comprising recently proposed targets to treat cancers, infections, metabolic disease and neurodegeneration, the advancement of TPC/TRPML understanding is of considerable importance. This review proposes novel directions elucidating TPC/TRPML relevance in health and disease. This article is part of a Special Issue entitled: ECS Meeting edited by Claus Heizmann, Joachim Krebs and Jacques Haiech.   Goto Sponge  NotDistinct  Permalink

An Entity of Type : fabio:Abstract, within Data Space : covidontheweb.inria.fr associated with source document(s)

AttributesValues
type
value
  • Abstract Background The endolysosomal, non-selective cation channels, two-pore channels (TPCs) and mucolipins (TRPMLs), regulate intracellular membrane dynamics and autophagy. While partially compensatory for each other, isoform-specific intracellular distribution, cell-type expression patterns, and regulatory mechanisms suggest different channel isoforms confer distinct properties to the cell. Scope of review Briefly, established TPC/TRPML functions and interaction partners (‘interactomes’) are discussed. Novel TRPML3 interactors are shown, and a meta-analysis of experimentally obtained channel interactomes conducted. Accordingly, interactomes are compared and contrasted, and subsequently described in detail for TPC1, TPC2, TRPML1, and TRPML3. Major conclusions TPC interactomes are well-defined, encompassing intracellular membrane organisation proteins. TRPML interactomes are varied, encompassing cardiac contractility- and chaperone-mediated autophagy proteins, alongside regulators of intercellular signalling. General significance Comprising recently proposed targets to treat cancers, infections, metabolic disease and neurodegeneration, the advancement of TPC/TRPML understanding is of considerable importance. This review proposes novel directions elucidating TPC/TRPML relevance in health and disease. This article is part of a Special Issue entitled: ECS Meeting edited by Claus Heizmann, Joachim Krebs and Jacques Haiech.
subject
  • Bioinformatics
  • Senescence
  • Ion channels
  • Systems biology
  • Cardiovascular physiology
  • Cell anatomy
  • Membrane biology
  • Molecular biology
part of
is abstract of
is hasSource of
Faceted Search & Find service v1.13.91 as of Mar 24 2020


Alternative Linked Data Documents: Sponger | ODE     Content Formats:       RDF       ODATA       Microdata      About   
This material is Open Knowledge   W3C Semantic Web Technology [RDF Data]
OpenLink Virtuoso version 07.20.3229 as of Jul 10 2020, on Linux (x86_64-pc-linux-gnu), Single-Server Edition (94 GB total memory)
Data on this page belongs to its respective rights holders.
Virtuoso Faceted Browser Copyright © 2009-2025 OpenLink Software