About: With the ongoing SARS-CoV-2 pandemic there is an urgent need for the discovery of a treatment for the coronavirus disease (COVID-19). Drug repurposing is one of the most rapid strategies for addressing this need and numerous compounds have been selected for in vitro testing by several groups already. These have led to a growing database of molecules with in vitro activity against the virus. Machine learning models can assist drug discovery through prediction of the best compounds based on previously published data. Herein we have implemented several machine learning methods to develop predictive models from recent SARS-CoV-2 in vitro inhibition data and used them to prioritize additional FDA approved compounds for in vitro testing selected from our in-house compound library. From the compounds predicted with a Bayesian machine learning model, CPI1062 and CPI1155 showed antiviral activity in HeLa-ACE2 cell-based assays and represent potential repurposing opportunities for COVID-19. This approach can be greatly expanded to exhaustively virtually screen available molecules with predicted activity against this virus as well as a prioritization tool for SARS-CoV-2 antiviral drug discovery programs. The very latest model for SARS-CoV-2 is available at www.assaycentral.org.   Goto Sponge  NotDistinct  Permalink

An Entity of Type : fabio:Abstract, within Data Space : covidontheweb.inria.fr associated with source document(s)

AttributesValues
type
value
  • With the ongoing SARS-CoV-2 pandemic there is an urgent need for the discovery of a treatment for the coronavirus disease (COVID-19). Drug repurposing is one of the most rapid strategies for addressing this need and numerous compounds have been selected for in vitro testing by several groups already. These have led to a growing database of molecules with in vitro activity against the virus. Machine learning models can assist drug discovery through prediction of the best compounds based on previously published data. Herein we have implemented several machine learning methods to develop predictive models from recent SARS-CoV-2 in vitro inhibition data and used them to prioritize additional FDA approved compounds for in vitro testing selected from our in-house compound library. From the compounds predicted with a Bayesian machine learning model, CPI1062 and CPI1155 showed antiviral activity in HeLa-ACE2 cell-based assays and represent potential repurposing opportunities for COVID-19. This approach can be greatly expanded to exhaustively virtually screen available molecules with predicted activity against this virus as well as a prioritization tool for SARS-CoV-2 antiviral drug discovery programs. The very latest model for SARS-CoV-2 is available at www.assaycentral.org.
Subject
  • Virology
  • Prediction
  • 2019 disasters in China
part of
is abstract of
is hasSource of
Faceted Search & Find service v1.13.91 as of Mar 24 2020


Alternative Linked Data Documents: Sponger | ODE     Content Formats:       RDF       ODATA       Microdata      About   
This material is Open Knowledge   W3C Semantic Web Technology [RDF Data]
OpenLink Virtuoso version 07.20.3229 as of Jul 10 2020, on Linux (x86_64-pc-linux-gnu), Single-Server Edition (94 GB total memory)
Data on this page belongs to its respective rights holders.
Virtuoso Faceted Browser Copyright © 2009-2025 OpenLink Software