About: Modern Algorithmic Trading (%22Algo%22) allows institutional investors and traders to liquidate or establish big security positions in a fully automated or low-touch manner. Most existing academic or industrial Algos focus on how to%22slice%22a big parent order into smaller child orders over a given time horizon. Few models rigorously tackle the actual placement of these child orders. Instead, placement is mostly done with a combination of empirical signals and heuristic decision processes. A self-contained, realistic, and fully functional Child Order Placement (COP) model may never exist due to all the inherent complexities, e.g., fragmentation due to multiple venues, dynamics of limit order books, lit vs. dark liquidity, different trading sessions and rules. In this paper, we propose a reductionism COP model that focuses exclusively on the interplay between placing passive limit orders and sniping using aggressive takeout orders. The dynamic programming model assumes the form of a stochastic linear-quadratic regulator (LQR) and allows closed-form solutions under the backward Bellman equations. Explored in detail are model assumptions and general settings, the choice of state and control variables and the cost functions, and the derivation of the closed-form solutions.   Goto Sponge  NotDistinct  Permalink

An Entity of Type : fabio:Abstract, within Data Space : covidontheweb.inria.fr associated with source document(s)

AttributesValues
type
value
  • Modern Algorithmic Trading (%22Algo%22) allows institutional investors and traders to liquidate or establish big security positions in a fully automated or low-touch manner. Most existing academic or industrial Algos focus on how to%22slice%22a big parent order into smaller child orders over a given time horizon. Few models rigorously tackle the actual placement of these child orders. Instead, placement is mostly done with a combination of empirical signals and heuristic decision processes. A self-contained, realistic, and fully functional Child Order Placement (COP) model may never exist due to all the inherent complexities, e.g., fragmentation due to multiple venues, dynamics of limit order books, lit vs. dark liquidity, different trading sessions and rules. In this paper, we propose a reductionism COP model that focuses exclusively on the interplay between placing passive limit orders and sniping using aggressive takeout orders. The dynamic programming model assumes the form of a stochastic linear-quadratic regulator (LQR) and allows closed-form solutions under the backward Bellman equations. Explored in detail are model assumptions and general settings, the choice of state and control variables and the cost functions, and the derivation of the closed-form solutions.
Subject
  • Optimal control
  • Financial markets
  • Analytic philosophy
  • Loss functions
  • Greek goddesses
part of
is abstract of
is hasSource of
Faceted Search & Find service v1.13.91 as of Mar 24 2020


Alternative Linked Data Documents: Sponger | ODE     Content Formats:       RDF       ODATA       Microdata      About   
This material is Open Knowledge   W3C Semantic Web Technology [RDF Data]
OpenLink Virtuoso version 07.20.3229 as of Jul 10 2020, on Linux (x86_64-pc-linux-gnu), Single-Server Edition (94 GB total memory)
Data on this page belongs to its respective rights holders.
Virtuoso Faceted Browser Copyright © 2009-2025 OpenLink Software