AttributesValues
type
value
  • The current pandemic of the Novel Corona virus (COVID-19) has resulted in multifold challenges related to health, economy, and society, etc. for the entire world. Many mathematical epidemiological models have been tried for the available data of the COVID-19 pandemic with the core objective to observe the trend and trajectories of infected cases, recoveries, and deaths, etc. However, these models have their own assumptions and parameters and vary with regional demography. This article suggests the use of a more pragmatic approach of the Kalman filter with the Autoregressive Integrated Moving Average (ARIMA) models in order to obtain more precise forecasts for the figures of prevalence, active cases, recoveries, and deaths related to the COVID-19 outbreak in Pakistan.
Subject
  • Pakistan
  • 2019 disasters in China
  • February 2020 events in China
part of
is abstract of
is hasSource of
Faceted Search & Find service v1.13.91 as of Mar 24 2020


Alternative Linked Data Documents: Sponger | ODE     Content Formats:       RDF       ODATA       Microdata      About   
This material is Open Knowledge   W3C Semantic Web Technology [RDF Data]
OpenLink Virtuoso version 07.20.3229 as of Jul 10 2020, on Linux (x86_64-pc-linux-gnu), Single-Server Edition (94 GB total memory)
Data on this page belongs to its respective rights holders.
Virtuoso Faceted Browser Copyright © 2009-2024 OpenLink Software