AttributesValues
type
value
  • Cardiorespiratory (CR) signals are crucial vital signs for fitness condition tracking, medical diagnosis, and athlete performance evaluation. Monitoring such signals in real-life settings is among the most widespread applications of wearable computing. We investigate how miniaturized barometers can be used to perform accurate spirometry in a wearable system that is built on off-the-shelf training masks often used by athletes as a training aid. We perform an evaluation where differential barometric pressure sensors are compared concurrently with a digital spirometer, during an experimental setting of clinical forced vital capacity (FVC) test procedures with 20 participants. The relationship between the two instruments is derived by mathematical modeling first, then by various regression methods from experiment data. The results show that the error of FVC vital values between the two instruments can be as low as 2∼3%. Beyond clinical tests, the method can also measure continuous tidal breathing air volumes with a 1∼3% error margin. Overall, we conclude that barometers with millimeter footprints embedded in face mask apparel can perform similarly to a digital spirometer to monitor breathing airflow and volume in pulmonary function tests.
Subject
  • Pulmonary function testing
  • Italian inventions
  • Nosology
  • Respiratory therapy
  • Respiratory physiology
  • Ambient intelligence
part of
is abstract of
is hasSource of
Faceted Search & Find service v1.13.91 as of Mar 24 2020


Alternative Linked Data Documents: Sponger | ODE     Content Formats:       RDF       ODATA       Microdata      About   
This material is Open Knowledge   W3C Semantic Web Technology [RDF Data]
OpenLink Virtuoso version 07.20.3229 as of Jul 10 2020, on Linux (x86_64-pc-linux-gnu), Single-Server Edition (94 GB total memory)
Data on this page belongs to its respective rights holders.
Virtuoso Faceted Browser Copyright © 2009-2024 OpenLink Software