About: ABSTRACT: PURPOSE: We aimed to investigate the diagnostic performance of chest CT compared with first RT-PCR results in adult patients suspected of COVID-19 infection in an ED setting. We also constructed a predictive machine learning model based on chest CT and additional data to improve the diagnostic accuracy of chest CT. METHODS: This study’s cohort consisted of 319 patients who underwent chest CT and RT-PCR testing at the ED. Patient characteristics, demographics, symptoms, vital signs, laboratory tests, and chest CT results (CO-RADS) were collected. With first RT-PCR as reference standard, the diagnostic performance of chest CT using the CO-RADS score was assessed. Additionally, a predictive machine learning model was constructed using logistic regression. RESULTS: Chest CT, with first RT-PCR as a reference, had a sensitivity, specificity, PPV, and NPV of 90.2%, 88.2%, 84.5%, and 92.7%, respectively. The prediction model with CO-RADS, ferritin, leucocyte count, CK, days of complaints, and diarrhea as predictors had a sensitivity, specificity, PPV, and NPV of 89.3%, 93.4%, 90.8%, and 92.3%, respectively. CONCLUSION: Chest CT, using the CO-RADS scoring system, is a sensitive and specific method that can aid in the diagnosis of COVID-19, especially if RT-PCR tests are scarce during an outbreak. Combining a predictive machine learning model could further improve the accuracy of diagnostic chest CT for COVID-19. Further candidate predictors should be analyzed to improve our model. However, RT-PCR should remain the primary standard of testing as up to 9% of RT-PCR positive patients are not diagnosed by chest CT or our machine learning model. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (10.1007/s10140-020-01821-1) contains supplementary material, which is available to authorized users.   Goto Sponge  NotDistinct  Permalink

An Entity of Type : fabio:Abstract, within Data Space : covidontheweb.inria.fr associated with source document(s)

AttributesValues
type
value
  • ABSTRACT: PURPOSE: We aimed to investigate the diagnostic performance of chest CT compared with first RT-PCR results in adult patients suspected of COVID-19 infection in an ED setting. We also constructed a predictive machine learning model based on chest CT and additional data to improve the diagnostic accuracy of chest CT. METHODS: This study’s cohort consisted of 319 patients who underwent chest CT and RT-PCR testing at the ED. Patient characteristics, demographics, symptoms, vital signs, laboratory tests, and chest CT results (CO-RADS) were collected. With first RT-PCR as reference standard, the diagnostic performance of chest CT using the CO-RADS score was assessed. Additionally, a predictive machine learning model was constructed using logistic regression. RESULTS: Chest CT, with first RT-PCR as a reference, had a sensitivity, specificity, PPV, and NPV of 90.2%, 88.2%, 84.5%, and 92.7%, respectively. The prediction model with CO-RADS, ferritin, leucocyte count, CK, days of complaints, and diarrhea as predictors had a sensitivity, specificity, PPV, and NPV of 89.3%, 93.4%, 90.8%, and 92.3%, respectively. CONCLUSION: Chest CT, using the CO-RADS scoring system, is a sensitive and specific method that can aid in the diagnosis of COVID-19, especially if RT-PCR tests are scarce during an outbreak. Combining a predictive machine learning model could further improve the accuracy of diagnostic chest CT for COVID-19. Further candidate predictors should be analyzed to improve our model. However, RT-PCR should remain the primary standard of testing as up to 9% of RT-PCR positive patients are not diagnosed by chest CT or our machine learning model. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (10.1007/s10140-020-01821-1) contains supplementary material, which is available to authorized users.
subject
  • X-ray computed tomography
  • Laboratory techniques
  • Medical tests
  • Molecular biology
  • 1972 introductions
  • Multidimensional signal processing
part of
is abstract of
is hasSource of
Faceted Search & Find service v1.13.91 as of Mar 24 2020


Alternative Linked Data Documents: Sponger | ODE     Content Formats:       RDF       ODATA       Microdata      About   
This material is Open Knowledge   W3C Semantic Web Technology [RDF Data]
OpenLink Virtuoso version 07.20.3229 as of Jul 10 2020, on Linux (x86_64-pc-linux-gnu), Single-Server Edition (94 GB total memory)
Data on this page belongs to its respective rights holders.
Virtuoso Faceted Browser Copyright © 2009-2025 OpenLink Software