Facets (new session)
Description
Metadata
Settings
owl:sameAs
Inference Rule:
b3s
b3sifp
dbprdf-label
facets
http://dbpedia.org/resource/inference/rules/dbpedia#
http://dbpedia.org/resource/inference/rules/opencyc#
http://dbpedia.org/resource/inference/rules/umbel#
http://dbpedia.org/resource/inference/rules/yago#
http://dbpedia.org/schema/property_rules#
http://www.ontologyportal.org/inference/rules/SUMO#
http://www.ontologyportal.org/inference/rules/WordNet#
http://www.w3.org/2002/07/owl#
ldp
oplweb
skos-trans
virtrdf-label
None
About:
Dynamics of COVID‐19 epidemics: SEIR models underestimate peak infection rates and overestimate epidemic duration
Goto
Sponge
NotDistinct
Permalink
An Entity of Type :
schema:ScholarlyArticle
, within Data Space :
covidontheweb.inria.fr
associated with source
document(s)
Type:
Academic Article
research paper
schema:ScholarlyArticle
New Facet based on Instances of this Class
Attributes
Values
type
Academic Article
research paper
schema:ScholarlyArticle
isDefinedBy
Covid-on-the-Web dataset
title
Dynamics of COVID‐19 epidemics: SEIR models underestimate peak infection rates and overestimate epidemic duration
Creator
Grant, Alastair
source
MedRxiv
abstract
Compartment models of infectious diseases, such as SEIR, are being used extensively to model the COVID-19 epidemic. Transitions between compartments are modelled either as instantaneous rates in differential equations, or as transition probabilities in discrete time difference or matrix equations. These models give accurate estimates of the position of equilibrium points, when the rate at which individuals enter each stage is equal to the rate at which they exit from it. However, they do not accurately capture the distribution of times that an individual spends in each compartment, so do not accurately capture the transient dynamics of epidemics. Here we show how matrix models can provide a straightforward route to accurately model stage durations, and thus correctly reproduce epidemic dynamics. We apply this approach to modelling the dynamics of a COVID-19 epidemic. We show that a SEIR model underestimates peak infection rates (by a factor of three using published parameter estimates based on the progress of the epidemic in Wuhan) and substantially overestimates epidemic persistence after the peak has passed.
has issue date
2020-04-06
(
xsd:dateTime
)
bibo:doi
10.1101/2020.04.02.20050674
has license
medrxiv
sha1sum (hex)
c90c1447ea65aeb66f76b0c6261d43bc1864c9a0
schema:url
https://doi.org/10.1101/2020.04.02.20050674
resource representing a document's title
Dynamics of COVID‐19 epidemics: SEIR models underestimate peak infection rates and overestimate epidemic duration
resource representing a document's body
covid:c90c1447ea65aeb66f76b0c6261d43bc1864c9a0#body_text
is
schema:about
of
named entity 'MODELS'
named entity 'Compartment'
named entity 'models'
named entity 'extensively'
named entity 'SEIR'
»more»
◂◂ First
◂ Prev
Next ▸
Last ▸▸
Page 1 of 4
Go
Faceted Search & Find service v1.13.91 as of Mar 24 2020
Alternative Linked Data Documents:
Sponger
|
ODE
Content Formats:
RDF
ODATA
Microdata
About
OpenLink Virtuoso
version 07.20.3229 as of Jul 10 2020, on Linux (x86_64-pc-linux-gnu), Single-Server Edition (94 GB total memory)
Data on this page belongs to its respective rights holders.
Virtuoso Faceted Browser Copyright © 2009-2025 OpenLink Software