value
| - Wind energy is seen as an important energy to sustainably meet the energy needs of Ghana. However, the industry in Ghana is yet to take off due to policy uncertainty and regulatory costs. The paper analyzed the key determinants and how they interact to impact the scaling up of wind energy in Ghana, using time series data, the vector auto regression (VAR) model from 2013 to 2019.There were four endogenous variables, grouped under policy, population growth, wind capacity, and electrification rate. The findings revealed the dynamic behavior of the variables from the VAR to a strongly significant positive correlation to deploying wind energy in Ghana. The impulse response functions (IRFs) equally exhibited a positive impact long-run trajectory growth of the variables after a shock to the system. The response of the first lags had differences of log policy and that of the log of GDP produced a curious result from the shock by taking a steady positive growth path in the short run and nosedived to a negative pathway in the long run. On the other hand, the interaction of the first differences of the lags of log wind capacity and log policy is quite instructive, as the headwind produced a negative relationship in the short run and to a positive growth path in the long run. This was anticipated, as the wind capacity installation of Ghana is expected to increase in the long run, when pipeline projects materialize.
|