About: Objectives Our primary objective is to predict the dynamics of COVID-19 epidemic in India while adjusting for the effects of various progressively implemented containment measures. Apart from forecasting the major turning points and parameters associated with the epidemic, we intend to provide an epidemiological assessment of the impact of these containment measures in India. Methods We propose a method based on time-series SIR model to estimate time-dependent modifiers for transmission rate of the infection. These modifiers are used in state-space SIR model to estimate reproduction number R0, expected total incidence, and to forecast the daily prevalence till the end of the epidemic. We consider four different scenarios, two based on current developments and two based on hypothetical situations for the purpose of comparison. Results Assuming gradual relaxation in lockdown post 17 May 2020, we expect the prevalence of infecteds to cross 9 million, with at least 1 million severe cases, around the end of October 2020. For the same case, estimates of R0 for the phases no-intervention, partial-lockdown and lockdown are 4.46 (7.1), 1.47 (2.33), and 0.817 (1.29) respectively, assuming 14-day (24-day) infectious period. Conclusions Estimated modifiers give consistent estimates of unadjusted R0 across different scenarios, demonstrating precision. Results corroborate the effectiveness of lockdown measures in substantially reducing R0. Also, predictions are highly sensitive towards estimate of infectious period.   Goto Sponge  NotDistinct  Permalink

An Entity of Type : fabio:Abstract, within Data Space : covidontheweb.inria.fr associated with source document(s)

AttributesValues
type
value
  • Objectives Our primary objective is to predict the dynamics of COVID-19 epidemic in India while adjusting for the effects of various progressively implemented containment measures. Apart from forecasting the major turning points and parameters associated with the epidemic, we intend to provide an epidemiological assessment of the impact of these containment measures in India. Methods We propose a method based on time-series SIR model to estimate time-dependent modifiers for transmission rate of the infection. These modifiers are used in state-space SIR model to estimate reproduction number R0, expected total incidence, and to forecast the daily prevalence till the end of the epidemic. We consider four different scenarios, two based on current developments and two based on hypothetical situations for the purpose of comparison. Results Assuming gradual relaxation in lockdown post 17 May 2020, we expect the prevalence of infecteds to cross 9 million, with at least 1 million severe cases, around the end of October 2020. For the same case, estimates of R0 for the phases no-intervention, partial-lockdown and lockdown are 4.46 (7.1), 1.47 (2.33), and 0.817 (1.29) respectively, assuming 14-day (24-day) infectious period. Conclusions Estimated modifiers give consistent estimates of unadjusted R0 across different scenarios, demonstrating precision. Results corroborate the effectiveness of lockdown measures in substantially reducing R0. Also, predictions are highly sensitive towards estimate of infectious period.
subject
  • COVID-19
  • BRICS nations
  • Member states of the South Asian Association for Regional Cooperation
part of
is abstract of
is hasSource of
Faceted Search & Find service v1.13.91 as of Mar 24 2020


Alternative Linked Data Documents: Sponger | ODE     Content Formats:       RDF       ODATA       Microdata      About   
This material is Open Knowledge   W3C Semantic Web Technology [RDF Data]
OpenLink Virtuoso version 07.20.3229 as of Jul 10 2020, on Linux (x86_64-pc-linux-gnu), Single-Server Edition (94 GB total memory)
Data on this page belongs to its respective rights holders.
Virtuoso Faceted Browser Copyright © 2009-2025 OpenLink Software