AttributesValues
type
value
  • Mathematical models are often regarded as recent innovations in the description and analysis of infectious disease outbreaks and epidemics, but simple models have been in use for projection of epidemic trajectories for more than a century. We recently described a single equation model (the incidence decay with exponential adjustment, or IDEA, model) that can be used for short term forecasting. In the mid-19th century, Dr. William Farr developed a single equation approach (Farr's law) for epidemic forecasting. We show here that the two models are in fact identical, and can be expressed in terms of one another, and also in terms of a susceptible-infectious-removed (SIR) compartmental model with improving control. This demonstrates that the concept of the reproduction number, R0, is implicit to Farr's (pre-microbial era) work, and also suggests that control of epidemics, whether via behavior change or intervention, is as integral to the natural history of epidemics as is the dynamics of disease transmission.
Subject
  • Epidemics
  • Epidemiology
  • Pandemics
  • Biological hazards
  • Fellows of the Royal Society
  • People from Shropshire
part of
is abstract of
is hasSource of
Faceted Search & Find service v1.13.91 as of Mar 24 2020


Alternative Linked Data Documents: Sponger | ODE     Content Formats:       RDF       ODATA       Microdata      About   
This material is Open Knowledge   W3C Semantic Web Technology [RDF Data]
OpenLink Virtuoso version 07.20.3229 as of Jul 10 2020, on Linux (x86_64-pc-linux-gnu), Single-Server Edition (94 GB total memory)
Data on this page belongs to its respective rights holders.
Virtuoso Faceted Browser Copyright © 2009-2024 OpenLink Software