About: Cloud Computing services for data analytics are increasingly being sought by companies to extract value from large quantities of information. However, processing data from individuals and companies in third-party infrastructures raises several privacy concerns. To this end, different secure analytics techniques and systems have recently emerged. These initial proposals leverage specific cryptographic primitives lacking generality and thus having their application restricted to particular application scenarios. In this work, we contribute to this thriving body of knowledge by combining two complementary approaches to process sensitive data. We present SafeSpark, a secure data analytics framework that enables the combination of different cryptographic processing techniques with hardware-based protected environments for privacy-preserving data storage and processing. SafeSpark is modular and extensible therefore adapting to data analytics applications with different performance, security and functionality requirements. We have implemented a SafeSpark’s prototype based on Spark SQL and Intel SGX hardware. It has been evaluated with the TPC-DS Benchmark under three scenarios using different cryptographic primitives and secure hardware configurations. These scenarios provide a particular set of security guarantees and yield distinct performance impact, with overheads ranging from as low as 10% to an acceptable 300% when compared to an insecure vanilla deployment of Apache Spark.   Goto Sponge  NotDistinct  Permalink

An Entity of Type : fabio:Abstract, within Data Space : covidontheweb.inria.fr associated with source document(s)

AttributesValues
type
value
  • Cloud Computing services for data analytics are increasingly being sought by companies to extract value from large quantities of information. However, processing data from individuals and companies in third-party infrastructures raises several privacy concerns. To this end, different secure analytics techniques and systems have recently emerged. These initial proposals leverage specific cryptographic primitives lacking generality and thus having their application restricted to particular application scenarios. In this work, we contribute to this thriving body of knowledge by combining two complementary approaches to process sensitive data. We present SafeSpark, a secure data analytics framework that enables the combination of different cryptographic processing techniques with hardware-based protected environments for privacy-preserving data storage and processing. SafeSpark is modular and extensible therefore adapting to data analytics applications with different performance, security and functionality requirements. We have implemented a SafeSpark’s prototype based on Spark SQL and Intel SGX hardware. It has been evaluated with the TPC-DS Benchmark under three scenarios using different cryptographic primitives and secure hardware configurations. These scenarios provide a particular set of security guarantees and yield distinct performance impact, with overheads ranging from as low as 10% to an acceptable 300% when compared to an insecure vanilla deployment of Apache Spark.
Subject
  • Security
  • Analytics
  • Information
  • Big data
  • Business terms
  • Data security
  • National security
  • Business intelligence
  • Formal sciences
  • Computer security
  • Cloud computing
  • Cloud infrastructure
  • Financial data analysis
  • Cryptographic primitives
  • Information sensitivity
part of
is abstract of
is hasSource of
Faceted Search & Find service v1.13.91 as of Mar 24 2020


Alternative Linked Data Documents: Sponger | ODE     Content Formats:       RDF       ODATA       Microdata      About   
This material is Open Knowledge   W3C Semantic Web Technology [RDF Data]
OpenLink Virtuoso version 07.20.3229 as of Jul 10 2020, on Linux (x86_64-pc-linux-gnu), Single-Server Edition (94 GB total memory)
Data on this page belongs to its respective rights holders.
Virtuoso Faceted Browser Copyright © 2009-2024 OpenLink Software