About: Abstract To gain insight into the mechanism of Lactobacillus acidophilus (L. acidophilus) S-layer protein antiviral activity, we examined how S-layer protein impacts porcine epidemic diarrhea virus (PEDV) infection and PEDV-induced apoptosis of Vero cells. Pretreatment (exclusion assay), coincubation (competition assay), and post-treatment (displacement assay) of PEDV-infected Vero cells with the S-layer protein was examined. Interestingly, significant inhibition of PEDV by S-layer protein was only observed in the exclusion assay. In Vero cells infected with PEDV, we found that apoptosis was mediated by activation of caspase-8 and caspase-3 in the late stage of infection. When PEDV-infected Vero cells were pretreated with S-layer protein, rates of Vero cell apoptosis were markedly decreased and cell damage was significantly reduced, as evaluated by flow cytometry and microscopy. Detailed analyses showed that the S-layer protein inhibited caspase-8 and caspase-3 activity. Taken together, our results suggest that L. acidophilus S-layer protein plays an inhibitory role during PEDV infection of Vero cells, and that the antagonistic activity of the protein is not via competition with PEDV for binding sites. In addition, the findings suggest that L. acidophilus S-layer protein protects against PEDV-induced apoptosis through reduced caspase-8 and caspase-3 activation in the later stages of infection. This mechanism may represent a novel approach for antagonizing PEDV and other viruses.   Goto Sponge  NotDistinct  Permalink

An Entity of Type : fabio:Abstract, within Data Space : covidontheweb.inria.fr associated with source document(s)

AttributesValues
type
value
  • Abstract To gain insight into the mechanism of Lactobacillus acidophilus (L. acidophilus) S-layer protein antiviral activity, we examined how S-layer protein impacts porcine epidemic diarrhea virus (PEDV) infection and PEDV-induced apoptosis of Vero cells. Pretreatment (exclusion assay), coincubation (competition assay), and post-treatment (displacement assay) of PEDV-infected Vero cells with the S-layer protein was examined. Interestingly, significant inhibition of PEDV by S-layer protein was only observed in the exclusion assay. In Vero cells infected with PEDV, we found that apoptosis was mediated by activation of caspase-8 and caspase-3 in the late stage of infection. When PEDV-infected Vero cells were pretreated with S-layer protein, rates of Vero cell apoptosis were markedly decreased and cell damage was significantly reduced, as evaluated by flow cytometry and microscopy. Detailed analyses showed that the S-layer protein inhibited caspase-8 and caspase-3 activity. Taken together, our results suggest that L. acidophilus S-layer protein plays an inhibitory role during PEDV infection of Vero cells, and that the antagonistic activity of the protein is not via competition with PEDV for binding sites. In addition, the findings suggest that L. acidophilus S-layer protein protects against PEDV-induced apoptosis through reduced caspase-8 and caspase-3 activation in the later stages of infection. This mechanism may represent a novel approach for antagonizing PEDV and other viruses.
Subject
  • Virology
  • Alphacoronaviruses
  • Cell anatomy
  • Membrane biology
  • Swine diseases
  • Science and technology in the Dutch Republic
part of
is abstract of
is hasSource of
Faceted Search & Find service v1.13.91 as of Mar 24 2020


Alternative Linked Data Documents: Sponger | ODE     Content Formats:       RDF       ODATA       Microdata      About   
This material is Open Knowledge   W3C Semantic Web Technology [RDF Data]
OpenLink Virtuoso version 07.20.3229 as of Jul 10 2020, on Linux (x86_64-pc-linux-gnu), Single-Server Edition (94 GB total memory)
Data on this page belongs to its respective rights holders.
Virtuoso Faceted Browser Copyright © 2009-2024 OpenLink Software