About: Exploring the Growth of COVID‐19 Cases using Exponential Modelling Across 42 Countries and Predicting Signs of Early Containment using Machine Learning   Goto Sponge  NotDistinct  Permalink

An Entity of Type : schema:ScholarlyArticle, within Data Space : covidontheweb.inria.fr associated with source document(s)

AttributesValues
type
isDefinedBy
title
  • Exploring the Growth of COVID‐19 Cases using Exponential Modelling Across 42 Countries and Predicting Signs of Early Containment using Machine Learning
Creator
  • Kumar, Dinesh
  • Kasilingam, Dharun
  • Kumar, Santhosh
  • Prabhakaran, Sathiya
  • Rajagopal, Varthini
  • Soundararaj, Ajitha
source
  • Medline; PMC
abstract
has issue date
bibo:doi
  • 10.1111/tbed.13764
bibo:pmid
  • 32749759
has license
  • no-cc
sha1sum (hex)
  • be624481f6d78f901b5247317e7cd3788437357f
schema:url
resource representing a document's title
has PubMed Central identifier
  • PMC7436699
has PubMed identifier
  • 32749759
schema:publication
  • Transbound Emerg Dis
resource representing a document's body
is schema:about of
Faceted Search & Find service v1.13.91 as of Mar 24 2020


Alternative Linked Data Documents: Sponger | ODE     Content Formats:       RDF       ODATA       Microdata      About   
This material is Open Knowledge   W3C Semantic Web Technology [RDF Data]
OpenLink Virtuoso version 07.20.3229 as of Jul 10 2020, on Linux (x86_64-pc-linux-gnu), Single-Server Edition (94 GB total memory)
Data on this page belongs to its respective rights holders.
Virtuoso Faceted Browser Copyright © 2009-2025 OpenLink Software