About: Whipple’s disease is one of the rare maladies in terms of spread but very fatal one as it is linked with many disorders (like Gastroenteritis, Endocarditis etc.). Also, current regimens include less effective drugs which require long duration follows up. This exploratory study was conducted to commence the investigation for crafting multi target epitope vaccine against its bacterial pathogen Tropheryma whipplei. The modern bioinformatics tools like VaxiJen, NETMHCII PAN 3.2, ALLERGEN-FP, PATCH-DOCK, TOXIC-PRED, MHCPRED and IEDB were deployed, which makes the study more intensive in analyzing proteome of T. whipplei as these methods are based on robust result generating statistical algorithms ANN, HMM, and ML. This Immuno-Informatics approach leads us in the prediction of two epitopes: VLMVSAFPL and IRYLAALHL interacting with 4 and 6 HLA DRB1 alleles of MHC Class II respectively. VLMVSAFPL epitope is a part of DNA-directed RNA polymerase subunit beta, and IRYLAALHL epitope is a part of membranous protein insertase YidC of this bacterium. Molecular-Docking and Molecular-Simulation analysis yields the perfect interaction based on Atomic contact energy, binding scores along with RMSD values (0 to 1.5 Ǻ) in selection zone. The IEDB (Immune epitope database) population coverage analysis exhibits satisfactory relevance with respect to world population.   Goto Sponge  NotDistinct  Permalink

An Entity of Type : fabio:Abstract, within Data Space : covidontheweb.inria.fr associated with source document(s)

AttributesValues
type
value
  • Whipple’s disease is one of the rare maladies in terms of spread but very fatal one as it is linked with many disorders (like Gastroenteritis, Endocarditis etc.). Also, current regimens include less effective drugs which require long duration follows up. This exploratory study was conducted to commence the investigation for crafting multi target epitope vaccine against its bacterial pathogen Tropheryma whipplei. The modern bioinformatics tools like VaxiJen, NETMHCII PAN 3.2, ALLERGEN-FP, PATCH-DOCK, TOXIC-PRED, MHCPRED and IEDB were deployed, which makes the study more intensive in analyzing proteome of T. whipplei as these methods are based on robust result generating statistical algorithms ANN, HMM, and ML. This Immuno-Informatics approach leads us in the prediction of two epitopes: VLMVSAFPL and IRYLAALHL interacting with 4 and 6 HLA DRB1 alleles of MHC Class II respectively. VLMVSAFPL epitope is a part of DNA-directed RNA polymerase subunit beta, and IRYLAALHL epitope is a part of membranous protein insertase YidC of this bacterium. Molecular-Docking and Molecular-Simulation analysis yields the perfect interaction based on Atomic contact energy, binding scores along with RMSD values (0 to 1.5 Ǻ) in selection zone. The IEDB (Immune epitope database) population coverage analysis exhibits satisfactory relevance with respect to world population.
Subject
  • Virology
  • All-Nippon News Network
  • Antigenic determinant
  • Blood antigen systems
part of
is abstract of
is hasSource of
Faceted Search & Find service v1.13.91 as of Mar 24 2020


Alternative Linked Data Documents: Sponger | ODE     Content Formats:       RDF       ODATA       Microdata      About   
This material is Open Knowledge   W3C Semantic Web Technology [RDF Data]
OpenLink Virtuoso version 07.20.3229 as of Jul 10 2020, on Linux (x86_64-pc-linux-gnu), Single-Server Edition (94 GB total memory)
Data on this page belongs to its respective rights holders.
Virtuoso Faceted Browser Copyright © 2009-2025 OpenLink Software