AttributesValues
type
value
  • The World Health Organization reports that half of all mental illnesses begin by the age of 14. Most of these cases go undetected and untreated. The expanding use of social media has the potential to leverage the early identification of mental health diseases. As data gathered via social media are already digital, they have the ability to power up faster automatic analysis. In this article we evaluate the impact that psycholinguistic patterns can have on a standard machine learning approach for classifying depressed users based on their writings in an online public forum. We combine psycholinguistic features in a rule-based estimator and we evaluate their impact on this classification problem, along with three other standard classifiers. Our results on the Reddit Self-reported Depression Diagnosis dataset outperform some previously reported works on the same dataset. They stand for the importance of extracting psychologically motivated features when processing social media texts with the purpose of studying mental health.
Subject
  • Organizations established in 1948
  • Y Combinator companies
  • Organizations associated with the COVID-19 pandemic
part of
is abstract of
is hasSource of
Faceted Search & Find service v1.13.91 as of Mar 24 2020


Alternative Linked Data Documents: Sponger | ODE     Content Formats:       RDF       ODATA       Microdata      About   
This material is Open Knowledge   W3C Semantic Web Technology [RDF Data]
OpenLink Virtuoso version 07.20.3229 as of Jul 10 2020, on Linux (x86_64-pc-linux-gnu), Single-Server Edition (94 GB total memory)
Data on this page belongs to its respective rights holders.
Virtuoso Faceted Browser Copyright © 2009-2024 OpenLink Software