About: Amidst COVID-19 pandemic, extreme steps have been taken by countries globally. Lockdown enforcement has emerged as one of the mitigating measures to reduce the community spread of the virus. With a reduction in major anthropogenic activities, a visible improvement in air quality has been recorded in urban centres. Hazardous air quality in countries like India and China leads to high mortality rates from cardiovascular diseases. The present article deals with 6 megacities in India and 6 cities in Hubei province, China, where strict lockdown measures were imposed. The real-time concentration of PM(2.5) and NO(2) were recorded at different monitoring stations in the cities for 3 months, i.e. January, February, and March for China and February, March, and April for India. The concentration data is converted into AQI according to US EPA parameters and the monthly and weekly averages are calculated for all the cities. Cities in China and India after 1 week of lockdown recorded an average drop in AQI(PM2.5) and AQI(NO2) of 11.32% and 48.61% and 20.21% and 59.26%, respectively. The results indicate that the drop in AQI(NO2) was instantaneous as compared with the gradual drop in AQI(PM2.5). The lockdown in China and India led to a final drop in AQI(PM2.5) of 45.25% and 64.65% and in AQI(NO2) of 37.42% and 65.80%, respectively. This study will assist the policymakers in devising a pathway to curb down air pollutant concentration in various urban cities by utilising the benchmark levels of air pollution.   Goto Sponge  NotDistinct  Permalink

An Entity of Type : fabio:Abstract, within Data Space : covidontheweb.inria.fr associated with source document(s)

AttributesValues
type
value
  • Amidst COVID-19 pandemic, extreme steps have been taken by countries globally. Lockdown enforcement has emerged as one of the mitigating measures to reduce the community spread of the virus. With a reduction in major anthropogenic activities, a visible improvement in air quality has been recorded in urban centres. Hazardous air quality in countries like India and China leads to high mortality rates from cardiovascular diseases. The present article deals with 6 megacities in India and 6 cities in Hubei province, China, where strict lockdown measures were imposed. The real-time concentration of PM(2.5) and NO(2) were recorded at different monitoring stations in the cities for 3 months, i.e. January, February, and March for China and February, March, and April for India. The concentration data is converted into AQI according to US EPA parameters and the monthly and weekly averages are calculated for all the cities. Cities in China and India after 1 week of lockdown recorded an average drop in AQI(PM2.5) and AQI(NO2) of 11.32% and 48.61% and 20.21% and 59.26%, respectively. The results indicate that the drop in AQI(NO2) was instantaneous as compared with the gradual drop in AQI(PM2.5). The lockdown in China and India led to a final drop in AQI(PM2.5) of 45.25% and 64.65% and in AQI(NO2) of 37.42% and 65.80%, respectively. This study will assist the policymakers in devising a pathway to curb down air pollutant concentration in various urban cities by utilising the benchmark levels of air pollution.
Subject
  • Environment of the United States
  • Air quality index
  • Environmental indices
part of
is abstract of
is hasSource of
Faceted Search & Find service v1.13.91 as of Mar 24 2020


Alternative Linked Data Documents: Sponger | ODE     Content Formats:       RDF       ODATA       Microdata      About   
This material is Open Knowledge   W3C Semantic Web Technology [RDF Data]
OpenLink Virtuoso version 07.20.3229 as of Jul 10 2020, on Linux (x86_64-pc-linux-gnu), Single-Server Edition (94 GB total memory)
Data on this page belongs to its respective rights holders.
Virtuoso Faceted Browser Copyright © 2009-2024 OpenLink Software