About: Predicting novel drugs for SARS-CoV-2 using machine learning from a >10 million chemical space   Goto Sponge  NotDistinct  Permalink

An Entity of Type : schema:ScholarlyArticle, within Data Space : covidontheweb.inria.fr associated with source document(s)

AttributesValues
type
isDefinedBy
title
  • Predicting novel drugs for SARS-CoV-2 using machine learning from a >10 million chemical space
Creator
  • Ray, Anandasankar
  • Kowalewski,
  • Q6, Joel
source
  • Elsevier; Medline; PMC
abstract
has issue date
bibo:doi
  • 10.1016/j.heliyon.2020.e04639
bibo:pmid
  • 32802980
has license
  • no-cc
sha1sum (hex)
  • b966d377a5ac89cf1d9824941a1eac0636a93294
schema:url
resource representing a document's title
has PubMed Central identifier
  • PMC7409807
has PubMed identifier
  • 32802980
schema:publication
  • Heliyon
resource representing a document's body
is schema:about of
Faceted Search & Find service v1.13.91 as of Mar 24 2020


Alternative Linked Data Documents: Sponger | ODE     Content Formats:       RDF       ODATA       Microdata      About   
This material is Open Knowledge   W3C Semantic Web Technology [RDF Data]
OpenLink Virtuoso version 07.20.3229 as of Jul 10 2020, on Linux (x86_64-pc-linux-gnu), Single-Server Edition (94 GB total memory)
Data on this page belongs to its respective rights holders.
Virtuoso Faceted Browser Copyright © 2009-2025 OpenLink Software