About: Abstract Introduction The COVID-19 pandemic is changing approaches to diagnosis, treatment, and care provision in multiple sclerosis (MS). During both the initial and peak phases of the epidemic, the administration of disease-modifying drugs, typically immunosuppressants administered in pulses, was suspended due to the uncertainty about their impact on SARS-CoV-2 infection, mainly in contagious asymptomatic/presymptomatic patients. The purpose of this study is to present a safety algorithm enabling patients to resume pulse immunosuppressive therapy (PIT) during the easing of lockdown measures. Methods We developed a safety algorithm based on our clinical experience with MS and the available published evidence; the algorithm assists in the detection of contagious asymptomatic/presymptomatic cases and of patients with mild symptoms of SARS-CoV-2 infection with a view to withdrawing PIT in these patients and preventing new infections at day hospitals. Results We developed a clinical/microbiological screening algorithm consisting of a symptom checklist, applied during a teleconsultation 48 h before the scheduled session of PIT, and PCR testing for SARS-CoV-2 in nasopharyngeal exudate 24 h before the procedure. Conclusion The application of our safety algorithm presents a favourable risk-benefit ratio despite the fact that the actual proportion of asymptomatic and presymptomatic individuals is unknown. Systematic PCR testing, which provides the highest sensitivity for detecting presymptomatic cases, combined with early detection of symptoms of SARS-CoV-2 infection may reduce infections and improve detection of high-risk patients before they receive PIT.   Goto Sponge  NotDistinct  Permalink

An Entity of Type : fabio:Abstract, within Data Space : covidontheweb.inria.fr associated with source document(s)

AttributesValues
type
value
  • Abstract Introduction The COVID-19 pandemic is changing approaches to diagnosis, treatment, and care provision in multiple sclerosis (MS). During both the initial and peak phases of the epidemic, the administration of disease-modifying drugs, typically immunosuppressants administered in pulses, was suspended due to the uncertainty about their impact on SARS-CoV-2 infection, mainly in contagious asymptomatic/presymptomatic patients. The purpose of this study is to present a safety algorithm enabling patients to resume pulse immunosuppressive therapy (PIT) during the easing of lockdown measures. Methods We developed a safety algorithm based on our clinical experience with MS and the available published evidence; the algorithm assists in the detection of contagious asymptomatic/presymptomatic cases and of patients with mild symptoms of SARS-CoV-2 infection with a view to withdrawing PIT in these patients and preventing new infections at day hospitals. Results We developed a clinical/microbiological screening algorithm consisting of a symptom checklist, applied during a teleconsultation 48 h before the scheduled session of PIT, and PCR testing for SARS-CoV-2 in nasopharyngeal exudate 24 h before the procedure. Conclusion The application of our safety algorithm presents a favourable risk-benefit ratio despite the fact that the actual proportion of asymptomatic and presymptomatic individuals is unknown. Systematic PCR testing, which provides the highest sensitivity for detecting presymptomatic cases, combined with early detection of symptoms of SARS-CoV-2 infection may reduce infections and improve detection of high-risk patients before they receive PIT.
Subject
  • Immunology
  • Zoonoses
  • Immune system
  • Algorithms
  • COVID-19
  • Medical treatments
  • Mathematical logic
  • Theoretical computer science
  • Musical groups established in 1995
  • Musical groups from Moscow
  • Russian power metal musical groups
  • Sarbecovirus
  • Chiroptera-borne diseases
  • Infraspecific virus taxa
part of
is abstract of
is hasSource of
Faceted Search & Find service v1.13.91 as of Mar 24 2020


Alternative Linked Data Documents: Sponger | ODE     Content Formats:       RDF       ODATA       Microdata      About   
This material is Open Knowledge   W3C Semantic Web Technology [RDF Data]
OpenLink Virtuoso version 07.20.3229 as of Jul 10 2020, on Linux (x86_64-pc-linux-gnu), Single-Server Edition (94 GB total memory)
Data on this page belongs to its respective rights holders.
Virtuoso Faceted Browser Copyright © 2009-2024 OpenLink Software