About: OBJECTIVES: To control epidemics, sites more affected by mortality should be identified. METHODS: Defining epidemic nodes as areas that included both most fatalities per time unit and connections, such as highways, geo-temporal Chinese data on the COVID-19 epidemic were investigated with linear, logarithmic, power, growth, exponential, and logistic regression models. A z-test compared the slopes observed. RESULTS: Twenty provinces suspected to act as epidemic nodes were empirically investigated. Five provinces displayed synchronicity, long-distance connections, directionality and assortativity – network properties that helped discriminate epidemic nodes. The rank I node included most fatalities and was activated first. Fewer deaths were reported, later, by rank II and III nodes While the data from rank I-III nodes exhibited slopes, the data from the remaining provinces did not. The power curve was the best fitting model for all slopes. Because all pairs (rank I vs. rank II, rank I vs. rank III, and rank II vs. rank III) of epidemic nodes differed statistically, rank I-III epidemic nodes were geo-temporally and statistically distinguishable. CONCLUSIONS: The geo-temporal progression of epidemics seems to be highly structured. Epidemic network properties can distinguish regions that differ in mortality. This real-time geo-referenced analysis can inform both decision-makers and clinicians.   Goto Sponge  NotDistinct  Permalink

An Entity of Type : fabio:Abstract, within Data Space : covidontheweb.inria.fr associated with source document(s)

AttributesValues
type
value
  • OBJECTIVES: To control epidemics, sites more affected by mortality should be identified. METHODS: Defining epidemic nodes as areas that included both most fatalities per time unit and connections, such as highways, geo-temporal Chinese data on the COVID-19 epidemic were investigated with linear, logarithmic, power, growth, exponential, and logistic regression models. A z-test compared the slopes observed. RESULTS: Twenty provinces suspected to act as epidemic nodes were empirically investigated. Five provinces displayed synchronicity, long-distance connections, directionality and assortativity – network properties that helped discriminate epidemic nodes. The rank I node included most fatalities and was activated first. Fewer deaths were reported, later, by rank II and III nodes While the data from rank I-III nodes exhibited slopes, the data from the remaining provinces did not. The power curve was the best fitting model for all slopes. Because all pairs (rank I vs. rank II, rank I vs. rank III, and rank II vs. rank III) of epidemic nodes differed statistically, rank I-III epidemic nodes were geo-temporally and statistically distinguishable. CONCLUSIONS: The geo-temporal progression of epidemics seems to be highly structured. Epidemic network properties can distinguish regions that differ in mortality. This real-time geo-referenced analysis can inform both decision-makers and clinicians.
subject
  • Telephone numbers by country
  • Communications in Tanzania
  • Tanzania communications-related lists
part of
is abstract of
is hasSource of
Faceted Search & Find service v1.13.91 as of Mar 24 2020


Alternative Linked Data Documents: Sponger | ODE     Content Formats:       RDF       ODATA       Microdata      About   
This material is Open Knowledge   W3C Semantic Web Technology [RDF Data]
OpenLink Virtuoso version 07.20.3229 as of Jul 10 2020, on Linux (x86_64-pc-linux-gnu), Single-Server Edition (94 GB total memory)
Data on this page belongs to its respective rights holders.
Virtuoso Faceted Browser Copyright © 2009-2025 OpenLink Software