About: Pulmonary tuberculosis (TB) remains a serious health problem worldwide. Effective vaccination strategies are needed. We report the development of a novel TB vaccine using vesicular stomatitis virus (VSV) as a viral vector system to express Ag85A. VSVAg85A was shown to be immunogenic when given to mice by either an intranasal or an intramuscular (IM) route. Although distinct T-cell profiles resulted from both routes of immunization, only intranasal delivery generated a mucosal T-cell response that was protective upon pulmonary Mycobacterium tuberculosis (M.tb) challenge. While this protection manifested at an early time-point after immunization, it was not sustained. The potential of VSVAg85A to be used as a mucosal booster for parenteral priming by an adenoviral TB vaccine expressing Ag85A (AdAg85A) was investigated. VSVAg85A immunization markedly boosted antigen-specific T-cell responses in the airway lumen while also augmenting immune activation in the systemic compartment, after AdAg85A priming. This translated into significantly better protective efficacy against pulmonary challenge with M.tb than either vaccine used alone. Our study therefore suggests that VSV as a vector system is a promising candidate to be used in a heterologous viral prime-boost immunization regimen against intracellular bacterial infection.   Goto Sponge  NotDistinct  Permalink

An Entity of Type : fabio:Abstract, within Data Space : covidontheweb.inria.fr associated with source document(s)

AttributesValues
type
value
  • Pulmonary tuberculosis (TB) remains a serious health problem worldwide. Effective vaccination strategies are needed. We report the development of a novel TB vaccine using vesicular stomatitis virus (VSV) as a viral vector system to express Ag85A. VSVAg85A was shown to be immunogenic when given to mice by either an intranasal or an intramuscular (IM) route. Although distinct T-cell profiles resulted from both routes of immunization, only intranasal delivery generated a mucosal T-cell response that was protective upon pulmonary Mycobacterium tuberculosis (M.tb) challenge. While this protection manifested at an early time-point after immunization, it was not sustained. The potential of VSVAg85A to be used as a mucosal booster for parenteral priming by an adenoviral TB vaccine expressing Ag85A (AdAg85A) was investigated. VSVAg85A immunization markedly boosted antigen-specific T-cell responses in the airway lumen while also augmenting immune activation in the systemic compartment, after AdAg85A priming. This translated into significantly better protective efficacy against pulmonary challenge with M.tb than either vaccine used alone. Our study therefore suggests that VSV as a vector system is a promising candidate to be used in a heterologous viral prime-boost immunization regimen against intracellular bacterial infection.
subject
  • Virology
  • Vaccination
  • Immune system
  • Routes of administration
  • Actuarial science
  • Membrane biology
part of
is abstract of
is hasSource of
Faceted Search & Find service v1.13.91 as of Mar 24 2020


Alternative Linked Data Documents: Sponger | ODE     Content Formats:       RDF       ODATA       Microdata      About   
This material is Open Knowledge   W3C Semantic Web Technology [RDF Data]
OpenLink Virtuoso version 07.20.3229 as of Jul 10 2020, on Linux (x86_64-pc-linux-gnu), Single-Server Edition (94 GB total memory)
Data on this page belongs to its respective rights holders.
Virtuoso Faceted Browser Copyright © 2009-2025 OpenLink Software