About: Image binarization is one of the most relevant preprocessing operations influencing the results of further image analysis conducted for many purposes. During this step a significant loss of information occurs and the use of inappropriate thresholding methods may cause difficulties in further shape analysis or even make it impossible to recognize different shapes of objects or characters. Some of the most typical applications utilizing the analysis of binary images are Optical Character Recognition (OCR) and Optical Mark Recognition (OMR), which may also be applied for unevenly illuminated natural images, as well as for challenging degraded historical document images, considered as typical benchmarking tools for image binarization algorithms. To face the still valid challenge of relatively fast and simple, but robust binarization of degraded document images, a novel two-step algorithm utilizing initial thresholding, based on the modelling of the simplified image histogram using Gaussian Mixture Model (GMM) and the Monte Carlo method, is proposed in the paper. This approach can be considered as the extension of recently developed image preprocessing method utilizing Generalized Gaussian Distribution (GGD), based on the assumption of its similarity to the histograms of ground truth binary images distorted by Gaussian noise. The processing time of the first step, producing the intermediate images with partially removed background information, may be significantly reduced due to the use of the Monte Carlo method. The proposed improved approach leads to even better results, not only for well-known DIBCO benchmarking databases, but also for more demanding Bickley Diary dataset, allowing the use of some well-known classical binarization methods, including the global ones, in the second step of the algorithm.   Goto Sponge  NotDistinct  Permalink

An Entity of Type : fabio:Abstract, within Data Space : covidontheweb.inria.fr associated with source document(s)

AttributesValues
type
value
  • Image binarization is one of the most relevant preprocessing operations influencing the results of further image analysis conducted for many purposes. During this step a significant loss of information occurs and the use of inappropriate thresholding methods may cause difficulties in further shape analysis or even make it impossible to recognize different shapes of objects or characters. Some of the most typical applications utilizing the analysis of binary images are Optical Character Recognition (OCR) and Optical Mark Recognition (OMR), which may also be applied for unevenly illuminated natural images, as well as for challenging degraded historical document images, considered as typical benchmarking tools for image binarization algorithms. To face the still valid challenge of relatively fast and simple, but robust binarization of degraded document images, a novel two-step algorithm utilizing initial thresholding, based on the modelling of the simplified image histogram using Gaussian Mixture Model (GMM) and the Monte Carlo method, is proposed in the paper. This approach can be considered as the extension of recently developed image preprocessing method utilizing Generalized Gaussian Distribution (GGD), based on the assumption of its similarity to the histograms of ground truth binary images distorted by Gaussian noise. The processing time of the first step, producing the intermediate images with partially removed background information, may be significantly reduced due to the use of the Monte Carlo method. The proposed improved approach leads to even better results, not only for well-known DIBCO benchmarking databases, but also for more demanding Bickley Diary dataset, allowing the use of some well-known classical binarization methods, including the global ones, in the second step of the algorithm.
Subject
  • Image processing
  • 2 (number)
  • Digital geometry
  • Artificial intelligence applications
  • Optical character recognition
  • Color depths
part of
is abstract of
is hasSource of
Faceted Search & Find service v1.13.91 as of Mar 24 2020


Alternative Linked Data Documents: Sponger | ODE     Content Formats:       RDF       ODATA       Microdata      About   
This material is Open Knowledge   W3C Semantic Web Technology [RDF Data]
OpenLink Virtuoso version 07.20.3229 as of Jul 10 2020, on Linux (x86_64-pc-linux-gnu), Single-Server Edition (94 GB total memory)
Data on this page belongs to its respective rights holders.
Virtuoso Faceted Browser Copyright © 2009-2024 OpenLink Software