About: We model further development of the COVID-19 epidemic in the UK given the current data and assuming different scenarios of handling the epidemic. In this research, we further extend the stochastic model suggested in [1] and incorporate in it all available to us knowledge about parameters characterising the behaviour of the virus and the illness induced by it. The models we use are flexible, comprehensive, fast to run and allow us to incorporate the following: - time-dependent strategies of handling the epidemic; - spatial heterogeneity of the population and heterogeneity of development of epidemic in different areas; - special characteristics of particular groups of people, especially people with specific medical pre-histories and elderly. Standard epidemiological models such as SIR and many of its modifications are not flexible enough and hence are not precise enough in the studies that requires the use of the features above. Decision-makers get serious benefits from using better and more flexible models as they can avoid of nuanced lock-downs, better plan the exit strategy based on local population data, different stages of the epidemic in different areas, making specific recommendations to specific groups of people; all this resulting in a lesser impact on economy, improved forecasts of regional demand upon NHS allowing for intelligent resource allocation.   Goto Sponge  NotDistinct  Permalink

An Entity of Type : fabio:Abstract, within Data Space : covidontheweb.inria.fr associated with source document(s)

AttributesValues
type
value
  • We model further development of the COVID-19 epidemic in the UK given the current data and assuming different scenarios of handling the epidemic. In this research, we further extend the stochastic model suggested in [1] and incorporate in it all available to us knowledge about parameters characterising the behaviour of the virus and the illness induced by it. The models we use are flexible, comprehensive, fast to run and allow us to incorporate the following: - time-dependent strategies of handling the epidemic; - spatial heterogeneity of the population and heterogeneity of development of epidemic in different areas; - special characteristics of particular groups of people, especially people with specific medical pre-histories and elderly. Standard epidemiological models such as SIR and many of its modifications are not flexible enough and hence are not precise enough in the studies that requires the use of the features above. Decision-makers get serious benefits from using better and more flexible models as they can avoid of nuanced lock-downs, better plan the exit strategy based on local population data, different stages of the epidemic in different areas, making specific recommendations to specific groups of people; all this resulting in a lesser impact on economy, improved forecasts of regional demand upon NHS allowing for intelligent resource allocation.
subject
  • Virology
  • Epidemics
  • Viruses
  • Biological hazards
  • Stochastic processes
  • Statistical data types
  • Stochastic models
  • 1898 in biology
  • COVID-19 pandemic in the United Kingdom
part of
is abstract of
is hasSource of
Faceted Search & Find service v1.13.91 as of Mar 24 2020


Alternative Linked Data Documents: Sponger | ODE     Content Formats:       RDF       ODATA       Microdata      About   
This material is Open Knowledge   W3C Semantic Web Technology [RDF Data]
OpenLink Virtuoso version 07.20.3229 as of Jul 10 2020, on Linux (x86_64-pc-linux-gnu), Single-Server Edition (94 GB total memory)
Data on this page belongs to its respective rights holders.
Virtuoso Faceted Browser Copyright © 2009-2025 OpenLink Software