value
| - Abstract Most vaccines in use today are the result of empirical development. The mechanism of action of many vaccines in common use remains incompletely understood. Understanding how such vaccines protect is an ongoing subject of study using increasingly sophisticated immunological tools, such as B cell and T cell repertoire and transcriptome analysis. Such tools are also being applied to the design of vaccines against those viral targets that have evaded vaccine-mediated protection thus far. As basic immunological science intersects with the practicalities of assuring vaccine safety, tolerability, efficacy, and consistency in the clinic, the practical utility of more sophisticated immunological measures for vaccine development may be determined by whether they can be reduced to simply executed, highly standardized, reproducible assays with outcomes that have clear interpretations for vaccine development and use. Basic immunology, empirical vaccine testing, and regulatory science are all necessary contributors to developing the next generation of vaccines, including vaccines effective against the pathogens for which vaccines are not currently available.
|