AttributesValues
type
value
  • Abstract Polymerase chain reaction has been applied to the amplification of long DNA fragments from a variety of sources, including genomic, mitochondrial, and viral DNAs. However, polymerase chain reaction amplification from cDNA templates produced by reverse transcription has generally been restricted to products of less than 10 kilobases. In this paper, we report a system to effectively amplify fragments up to 20 kilobases from human coronavirus 229E genomic RNA. We demonstrate that the integrity of the RNA template and the prevention of false priming events during reverse transcription are the critical parameters to achieve the synthesis of long cDNAs. The optimization of the polymerase chain reaction conditions enabled us to improve the specificity and yield of product but they were not definitive. Finally, we have shown that the same reverse transcription polymerase chain reaction technology can be used for the amplification of extended regions of the dystrophin mRNA, a cellular RNA of relatively low abundance.
Subject
  • Biotechnology
  • Genetics
  • Nucleic acids
  • Senescence
  • Molecular biology
  • Nucleobases
part of
is abstract of
is hasSource of
Faceted Search & Find service v1.13.91 as of Mar 24 2020


Alternative Linked Data Documents: Sponger | ODE     Content Formats:       RDF       ODATA       Microdata      About   
This material is Open Knowledge   W3C Semantic Web Technology [RDF Data]
OpenLink Virtuoso version 07.20.3229 as of Jul 10 2020, on Linux (x86_64-pc-linux-gnu), Single-Server Edition (94 GB total memory)
Data on this page belongs to its respective rights holders.
Virtuoso Faceted Browser Copyright © 2009-2025 OpenLink Software