About: We previously demonstrated that transmissible gastroenteritis virus (TGEV) could induce apoptosis through caspase signaling. However, apoptosis was not completely prevented by caspases inhibitors, suggesting that there may be a caspase-independent pathway involved in TGEV-induced cell apoptosis. In this study, we investigated the regulation of apoptosis-inducing factor (AIF) on TGEV-induced apoptotic pathway. Results indicated that AIF translocated from the mitochondria to nucleus during TGEV infection, and the AIF inhibitor, N-phenylmaleimide (NP), significantly attenuated the apoptosis. In addition, the translocation of AIF was inhibited by Veliparib (ABT-888), an inhibitor of poly (ADP-ribose) polymerase (PARP). And the reactive oxygen species (ROS) scavenger, pyrrolidinedithiocarbamic (PDTC), redistributed AIF in the mitochondria and nucleus in TGEV-infected cells. Moreover, the protein levels in nucleus and the mRNA levels of AIF were inhibited in the presence of the p53 inhibitor, pifithrin-α (PFT-α) or in TGEV-infected p53−/−cells. Furthermore, TGEV-induced apoptosis was blocked by combination of three or more inhibitors, such as pan caspase inhibitor Z-VAD-FMK, NP, ABT-888, PDTC, PFT-α, to treat PK-15 cells. Taken together, these results suggest that the p53- and ROS-mediated AIF pathway and caspase-dependent pathway were involved in TGEV-induced apoptosis.   Goto Sponge  NotDistinct  Permalink

An Entity of Type : fabio:Abstract, within Data Space : covidontheweb.inria.fr associated with source document(s)

AttributesValues
type
value
  • We previously demonstrated that transmissible gastroenteritis virus (TGEV) could induce apoptosis through caspase signaling. However, apoptosis was not completely prevented by caspases inhibitors, suggesting that there may be a caspase-independent pathway involved in TGEV-induced cell apoptosis. In this study, we investigated the regulation of apoptosis-inducing factor (AIF) on TGEV-induced apoptotic pathway. Results indicated that AIF translocated from the mitochondria to nucleus during TGEV infection, and the AIF inhibitor, N-phenylmaleimide (NP), significantly attenuated the apoptosis. In addition, the translocation of AIF was inhibited by Veliparib (ABT-888), an inhibitor of poly (ADP-ribose) polymerase (PARP). And the reactive oxygen species (ROS) scavenger, pyrrolidinedithiocarbamic (PDTC), redistributed AIF in the mitochondria and nucleus in TGEV-infected cells. Moreover, the protein levels in nucleus and the mRNA levels of AIF were inhibited in the presence of the p53 inhibitor, pifithrin-α (PFT-α) or in TGEV-infected p53−/−cells. Furthermore, TGEV-induced apoptosis was blocked by combination of three or more inhibitors, such as pan caspase inhibitor Z-VAD-FMK, NP, ABT-888, PDTC, PFT-α, to treat PK-15 cells. Taken together, these results suggest that the p53- and ROS-mediated AIF pathway and caspase-dependent pathway were involved in TGEV-induced apoptosis.
Subject
  • Apoptosis
  • Senescence
  • RNA splicing
  • Programmed cell death
  • Cell signaling
  • Cellular respiration
part of
is abstract of
is hasSource of
Faceted Search & Find service v1.13.91 as of Mar 24 2020


Alternative Linked Data Documents: Sponger | ODE     Content Formats:       RDF       ODATA       Microdata      About   
This material is Open Knowledge   W3C Semantic Web Technology [RDF Data]
OpenLink Virtuoso version 07.20.3229 as of Jul 10 2020, on Linux (x86_64-pc-linux-gnu), Single-Server Edition (94 GB total memory)
Data on this page belongs to its respective rights holders.
Virtuoso Faceted Browser Copyright © 2009-2024 OpenLink Software