About: This paper presents a state estimation-based robust optimal control strategy for influenza epidemics in an interactive human society in the presence of modeling uncertainties. Interactive society is influenced by the random entrance of individuals from other human societies whose effects can be modeled as a non-Gaussian noise. Since only the number of exposed and infected humans can be measured, states of the influenza epidemics are first estimated by an extended maximum correntropy Kalman filter (EMCKF) to provide a robust state estimation in the presence of the non-Gaussian noise. An online quadratic program (QP) optimization is then synthesized subject to a robust control Lyapunov function (RCLF) to minimize susceptible and infected humans, while minimizing and bounding the rates of vaccination and antiviral treatment. The joint QP-RCLF-EMCKF meets multiple design specifications such as state estimation, tracking, pointwise control optimality, and robustness to parameter uncertainty and state estimation errors that have not been achieved simultaneously in previous studies. The uniform ultimate boundedness (UUB)/convergence of error trajectories is guaranteed using a Lyapunov stability argument. The soundness of the proposed approach is validated on the influenza epidemics of an interactive human society with a population of 16000. Simulation results show that the QP-RCLF-EMCKF achieves appropriate tracking and state estimation performance. The robustness of the proposed controller is finally illustrated in the presence of modeling error and non-Gaussian noise.   Goto Sponge  NotDistinct  Permalink

An Entity of Type : fabio:Abstract, within Data Space : covidontheweb.inria.fr associated with source document(s)

AttributesValues
type
value
  • This paper presents a state estimation-based robust optimal control strategy for influenza epidemics in an interactive human society in the presence of modeling uncertainties. Interactive society is influenced by the random entrance of individuals from other human societies whose effects can be modeled as a non-Gaussian noise. Since only the number of exposed and infected humans can be measured, states of the influenza epidemics are first estimated by an extended maximum correntropy Kalman filter (EMCKF) to provide a robust state estimation in the presence of the non-Gaussian noise. An online quadratic program (QP) optimization is then synthesized subject to a robust control Lyapunov function (RCLF) to minimize susceptible and infected humans, while minimizing and bounding the rates of vaccination and antiviral treatment. The joint QP-RCLF-EMCKF meets multiple design specifications such as state estimation, tracking, pointwise control optimality, and robustness to parameter uncertainty and state estimation errors that have not been achieved simultaneously in previous studies. The uniform ultimate boundedness (UUB)/convergence of error trajectories is guaranteed using a Lyapunov stability argument. The soundness of the proposed approach is validated on the influenza epidemics of an interactive human society with a population of 16000. Simulation results show that the QP-RCLF-EMCKF achieves appropriate tracking and state estimation performance. The robustness of the proposed controller is finally illustrated in the presence of modeling error and non-Gaussian noise.
Subject
  • Optimization algorithms and methods
  • Scientific modeling
  • Time series
  • Copernicium
  • Classical control theory
part of
is abstract of
is hasSource of
Faceted Search & Find service v1.13.91 as of Mar 24 2020


Alternative Linked Data Documents: Sponger | ODE     Content Formats:       RDF       ODATA       Microdata      About   
This material is Open Knowledge   W3C Semantic Web Technology [RDF Data]
OpenLink Virtuoso version 07.20.3229 as of Jul 10 2020, on Linux (x86_64-pc-linux-gnu), Single-Server Edition (94 GB total memory)
Data on this page belongs to its respective rights holders.
Virtuoso Faceted Browser Copyright © 2009-2025 OpenLink Software