AttributesValues
type
value
  • In this paper, we propose a model where two strains compete with each other at the expense of common susceptible individuals on heterogeneous networks by using pair-wise approximation closed by the probability-generating function (PGF). All of the strains obey the susceptible–infected–recovered (SIR) mechanism. From a special perspective, we first study the dynamical behaviour of an SIR model closed by the PGF, and obtain the basic reproduction number via two methods. Then we build a model to study the spreading dynamics of competing viruses and discuss the conditions for the local stability of equilibria, which is different from the condition obtained by using the heterogeneous mean-field approach. Finally, we perform numerical simulations on Barabási–Albert networks to complement our theoretical research, and show some dynamical properties of the model with competing viruses. This article is part of the themed issue ‘Mathematical methods in medicine: neuroscience, cardiology and pathology’.
Subject
  • Pathology
  • Neuroscience
  • Cardiology
  • Mathematical physics
  • Branches of biology
part of
is abstract of
is hasSource of
Faceted Search & Find service v1.13.91 as of Mar 24 2020


Alternative Linked Data Documents: Sponger | ODE     Content Formats:       RDF       ODATA       Microdata      About   
This material is Open Knowledge   W3C Semantic Web Technology [RDF Data]
OpenLink Virtuoso version 07.20.3229 as of Jul 10 2020, on Linux (x86_64-pc-linux-gnu), Single-Server Edition (94 GB total memory)
Data on this page belongs to its respective rights holders.
Virtuoso Faceted Browser Copyright © 2009-2025 OpenLink Software