About: Displacement ventilation (DV) is known to provide high air quality and ventilation efficiency. With DV, a contaminant interface is formed in a room, and the air quality in the occupant zone below the contaminant interface height can be kept clean. This paper proposes a DV system to solve the serious odor problem in hospital wards. A vertical radiant panel that can be controlled individually is suggested as a complementary heating system. In order to study the influence of the panel on the displacement ventilated room, the temperature and contaminant concentration profiles were examined under different panel conditions: the distance between the panel and bed, height of the panel, surface temperature of the panel, and supply airflow rate. When the radiant panel was heated, it created a stronger plume than the human body, which produced contaminated air. When there was space between the radiant panel and bed, the contaminated air was locked up before reaching the ceiling. Personal exposure of a standing person was also investigated because the contaminated interface is generally lower than the breathing zone of a standing person with DV. The zonal model and improved zonal model were validated by a comparison of their results with the measured contaminant concentrations.   Goto Sponge  NotDistinct  Permalink

An Entity of Type : fabio:Abstract, within Data Space : covidontheweb.inria.fr associated with source document(s)

AttributesValues
type
value
  • Displacement ventilation (DV) is known to provide high air quality and ventilation efficiency. With DV, a contaminant interface is formed in a room, and the air quality in the occupant zone below the contaminant interface height can be kept clean. This paper proposes a DV system to solve the serious odor problem in hospital wards. A vertical radiant panel that can be controlled individually is suggested as a complementary heating system. In order to study the influence of the panel on the displacement ventilated room, the temperature and contaminant concentration profiles were examined under different panel conditions: the distance between the panel and bed, height of the panel, surface temperature of the panel, and supply airflow rate. When the radiant panel was heated, it created a stronger plume than the human body, which produced contaminated air. When there was space between the radiant panel and bed, the contaminated air was locked up before reaching the ceiling. Personal exposure of a standing person was also investigated because the contaminated interface is generally lower than the breathing zone of a standing person with DV. The zonal model and improved zonal model were validated by a comparison of their results with the measured contaminant concentrations.
subject
  • Ventilation
  • Hospitals
  • Quality control
  • Environmental design
  • Environmental science
  • »more»
part of
is abstract of
is hasSource of
Faceted Search & Find service v1.13.91 as of Mar 24 2020


Alternative Linked Data Documents: Sponger | ODE     Content Formats:       RDF       ODATA       Microdata      About   
This material is Open Knowledge   W3C Semantic Web Technology [RDF Data]
OpenLink Virtuoso version 07.20.3229 as of Jul 10 2020, on Linux (x86_64-pc-linux-gnu), Single-Server Edition (94 GB total memory)
Data on this page belongs to its respective rights holders.
Virtuoso Faceted Browser Copyright © 2009-2025 OpenLink Software