About: This work presents mEBAL, a multimodal database for eye blink detection and attention level estimation. The eye blink frequency is related to the cognitive activity and automatic detectors of eye blinks have been proposed for many tasks including attention level estimation, analysis of neuro-degenerative diseases, deception recognition, drive fatigue detection, or face anti-spoofing. However, most existing databases and algorithms in this area are limited to experiments involving only a few hundred samples and individual sensors like face cameras. The proposed mEBAL improves previous databases in terms of acquisition sensors and samples. In particular, three different sensors are simultaneously considered: Near Infrared (NIR) and RGB cameras to capture the face gestures and an Electroencephalography (EEG) band to capture the cognitive activity of the user and blinking events. Regarding the size of mEBAL, it comprises 6,000 samples and the corresponding attention level from 38 different students while conducting a number of e-learning tasks of varying difficulty. In addition to presenting mEBAL, we also include preliminary experiments on: i) eye blink detection using Convolutional Neural Networks (CNN) with the facial images, and ii) attention level estimation of the students based on their eye blink frequency.   Goto Sponge  NotDistinct  Permalink

An Entity of Type : fabio:Abstract, within Data Space : covidontheweb.inria.fr associated with source document(s)

AttributesValues
type
value
  • This work presents mEBAL, a multimodal database for eye blink detection and attention level estimation. The eye blink frequency is related to the cognitive activity and automatic detectors of eye blinks have been proposed for many tasks including attention level estimation, analysis of neuro-degenerative diseases, deception recognition, drive fatigue detection, or face anti-spoofing. However, most existing databases and algorithms in this area are limited to experiments involving only a few hundred samples and individual sensors like face cameras. The proposed mEBAL improves previous databases in terms of acquisition sensors and samples. In particular, three different sensors are simultaneously considered: Near Infrared (NIR) and RGB cameras to capture the face gestures and an Electroencephalography (EEG) band to capture the cognitive activity of the user and blinking events. Regarding the size of mEBAL, it comprises 6,000 samples and the corresponding attention level from 38 different students while conducting a number of e-learning tasks of varying difficulty. In addition to presenting mEBAL, we also include preliminary experiments on: i) eye blink detection using Convolutional Neural Networks (CNN) with the facial images, and ii) attention level estimation of the students based on their eye blink frequency.
Subject
  • Electrophysiology
  • Emerging technologies
  • Neurophysiology
  • Mathematics in medicine
  • Psychiatric assessment
  • Brain–computer interfacing
  • Electrodiagnosis
  • Electroencephalography
  • Neurotechnology
part of
is abstract of
is hasSource of
Faceted Search & Find service v1.13.91 as of Mar 24 2020


Alternative Linked Data Documents: Sponger | ODE     Content Formats:       RDF       ODATA       Microdata      About   
This material is Open Knowledge   W3C Semantic Web Technology [RDF Data]
OpenLink Virtuoso version 07.20.3229 as of Jul 10 2020, on Linux (x86_64-pc-linux-gnu), Single-Server Edition (94 GB total memory)
Data on this page belongs to its respective rights holders.
Virtuoso Faceted Browser Copyright © 2009-2025 OpenLink Software