About: Abstract [(Nix Mn 1- x )0.84Cu 0.16]3O4 (0.20 ≤ x ≤ 0.40) thin films have been prepared using the metal-organic decomposition method for microbolometer applications. Spinel thin films with a thickness of approximately 100 nm were obtained from the [(Ni x Mn1- x )0.84Cu0.16]3O4 films annealed at the low temperature of 380 °C for 5 h, which enables their direct integration onto substrates having complementary metal-oxide-semiconductor (CMOS) read-out circuitry. To obtain negative-temperature-coefficient films with reasonable performance through low enough temperature anneal process, Ni content has been systematically varied, and the film microstructure has been found to depend on the relative amount of Ni and Mn. A single phase of cubic spinel structure has been confirmed in the prepared films. The resistivity (ρ) of the annealed films decreases with increasing Mn4+/Mn3+ value due to the hopping mechanism between Mn3+ and Mn4+ cations in octahedral sites of spinel structure. Although the temperature coefficient of resistance (TCR) of the annealed films has been decreased slightly with the increase of Ni content, good enough properties of the film (ρ = 61.3 Ω•cm, TCR = −2.950%/K in x = 0.30 film) has been obtained even with the annealing at rather low temperature of 380 °C, thus enabling the direct integration onto substrates having read-out circuitry. The results obtained in this work are promising for applications to CMOS integrated microbolometer devices.   Goto Sponge  NotDistinct  Permalink

An Entity of Type : fabio:Abstract, within Data Space : covidontheweb.inria.fr associated with source document(s)

AttributesValues
type
value
  • Abstract [(Nix Mn 1- x )0.84Cu 0.16]3O4 (0.20 ≤ x ≤ 0.40) thin films have been prepared using the metal-organic decomposition method for microbolometer applications. Spinel thin films with a thickness of approximately 100 nm were obtained from the [(Ni x Mn1- x )0.84Cu0.16]3O4 films annealed at the low temperature of 380 °C for 5 h, which enables their direct integration onto substrates having complementary metal-oxide-semiconductor (CMOS) read-out circuitry. To obtain negative-temperature-coefficient films with reasonable performance through low enough temperature anneal process, Ni content has been systematically varied, and the film microstructure has been found to depend on the relative amount of Ni and Mn. A single phase of cubic spinel structure has been confirmed in the prepared films. The resistivity (ρ) of the annealed films decreases with increasing Mn4+/Mn3+ value due to the hopping mechanism between Mn3+ and Mn4+ cations in octahedral sites of spinel structure. Although the temperature coefficient of resistance (TCR) of the annealed films has been decreased slightly with the increase of Ni content, good enough properties of the film (ρ = 61.3 Ω•cm, TCR = −2.950%/K in x = 0.30 film) has been obtained even with the annealing at rather low temperature of 380 °C, thus enabling the direct integration onto substrates having read-out circuitry. The results obtained in this work are promising for applications to CMOS integrated microbolometer devices.
Subject
  • Biology and pharmacology of chemical elements
  • Charge carriers
  • Chemical elements
  • Dietary minerals
  • Digital electronics
  • Physical chemistry
  • Transition metals
part of
is abstract of
is hasSource of
Faceted Search & Find service v1.13.91 as of Mar 24 2020


Alternative Linked Data Documents: Sponger | ODE     Content Formats:       RDF       ODATA       Microdata      About   
This material is Open Knowledge   W3C Semantic Web Technology [RDF Data]
OpenLink Virtuoso version 07.20.3229 as of Jul 10 2020, on Linux (x86_64-pc-linux-gnu), Single-Server Edition (94 GB total memory)
Data on this page belongs to its respective rights holders.
Virtuoso Faceted Browser Copyright © 2009-2024 OpenLink Software