About: Abstract The spike (S) and hemagglutinin/esterase (HE) of bovine coronavirus (BCV) are the two envelope proteins that recognize the same receptor-determinant of 9-O-acetylneuraminic acid on host cells. However, the precise and relative roles of the two proteins in BCV infectivity remain elusive. To unequivocally determine their roles in viral cytopathogenicity, we developed a system in which phenotypically chimeric viruses were generated by infecting a closely related mouse hepatitis virus (MHV) in cells that stably express an individual BCV protein (S or HE). The chimeric viruses were then used to infect human rectal tumor (HRT)-18 cells that are permissive to BCV but are nonsusceptible to MHV. Using this approach, we found that the chimeric virus containing the BCV S protein on the virion surface entered and replicated in HRT-18 cells; this was specifically blocked by prior treatment of the virus with a neutralizing antibody specific to the BCV S protein, indicating that the BCV S protein is responsible for initiating chimeric virus infection. In contrast, chimeric viruses that contain biologically active and functional BCV HE protein on the surface failed to enter HRT-18 cells, indicating that the BCV HE protein alone is not sufficient for BCV infection. Taken together, these results demonstrate that the S protein but not the HE protein of BCV is necessary and sufficient for infection of the chimeric viruses in HRT-18 cells, suggesting that BCV likely uses the S protein as a primary vehicle to infect permissive cells.   Goto Sponge  NotDistinct  Permalink

An Entity of Type : fabio:Abstract, within Data Space : covidontheweb.inria.fr associated with source document(s)

AttributesValues
type
value
  • Abstract The spike (S) and hemagglutinin/esterase (HE) of bovine coronavirus (BCV) are the two envelope proteins that recognize the same receptor-determinant of 9-O-acetylneuraminic acid on host cells. However, the precise and relative roles of the two proteins in BCV infectivity remain elusive. To unequivocally determine their roles in viral cytopathogenicity, we developed a system in which phenotypically chimeric viruses were generated by infecting a closely related mouse hepatitis virus (MHV) in cells that stably express an individual BCV protein (S or HE). The chimeric viruses were then used to infect human rectal tumor (HRT)-18 cells that are permissive to BCV but are nonsusceptible to MHV. Using this approach, we found that the chimeric virus containing the BCV S protein on the virion surface entered and replicated in HRT-18 cells; this was specifically blocked by prior treatment of the virus with a neutralizing antibody specific to the BCV S protein, indicating that the BCV S protein is responsible for initiating chimeric virus infection. In contrast, chimeric viruses that contain biologically active and functional BCV HE protein on the surface failed to enter HRT-18 cells, indicating that the BCV HE protein alone is not sufficient for BCV infection. Taken together, these results demonstrate that the S protein but not the HE protein of BCV is necessary and sufficient for infection of the chimeric viruses in HRT-18 cells, suggesting that BCV likely uses the S protein as a primary vehicle to infect permissive cells.
Subject
  • Virology
  • Proteomics
  • Proteins
  • Hematology
  • Viruses
  • Animal virology
  • Betacoronaviruses
  • Membrane biology
  • Molecular biology
  • Rodent diseases
  • 1898 in biology
part of
is abstract of
is hasSource of
Faceted Search & Find service v1.13.91 as of Mar 24 2020


Alternative Linked Data Documents: Sponger | ODE     Content Formats:       RDF       ODATA       Microdata      About   
This material is Open Knowledge   W3C Semantic Web Technology [RDF Data]
OpenLink Virtuoso version 07.20.3229 as of Jul 10 2020, on Linux (x86_64-pc-linux-gnu), Single-Server Edition (94 GB total memory)
Data on this page belongs to its respective rights holders.
Virtuoso Faceted Browser Copyright © 2009-2024 OpenLink Software