About: The novel coronavirus (COVID-19) pandemic continues to be a global health problem whose impact has been significantly felt in South Africa. Social distancing has been touted as the best form of response in managing a rapid increase in the number of infected cases. In this paper, we present a deterministic model to model the impact of social distancing on the transmission dynamics of COVID-19 in South Africa. The model is fitted to the currently available data on the cumulative number of infected cases and a scenario analysis on different levels of social distancing are presented. The results show a continued rise in the number of cases in the lock down period with the current levels of social distancing albeit at a lower rate. The model shows that the number of cases will rise to above 4000 cases by the end of the lockdown. The model also looks at the impact of relaxing the social distancing measures after the initial announcement of the lock down measures. A relaxation of the social distancing by 2% can result in a 23% rise in the number of cumulative cases while on the other hand increasing the levels of social distancing by 2% would reduce the number of cumulative cases by about 18%. These results have implications on the management and policy direction in the early phases of the epidemic.   Goto Sponge  NotDistinct  Permalink

An Entity of Type : fabio:Abstract, within Data Space : covidontheweb.inria.fr associated with source document(s)

AttributesValues
type
value
  • The novel coronavirus (COVID-19) pandemic continues to be a global health problem whose impact has been significantly felt in South Africa. Social distancing has been touted as the best form of response in managing a rapid increase in the number of infected cases. In this paper, we present a deterministic model to model the impact of social distancing on the transmission dynamics of COVID-19 in South Africa. The model is fitted to the currently available data on the cumulative number of infected cases and a scenario analysis on different levels of social distancing are presented. The results show a continued rise in the number of cases in the lock down period with the current levels of social distancing albeit at a lower rate. The model shows that the number of cases will rise to above 4000 cases by the end of the lockdown. The model also looks at the impact of relaxing the social distancing measures after the initial announcement of the lock down measures. A relaxation of the social distancing by 2% can result in a 23% rise in the number of cumulative cases while on the other hand increasing the levels of social distancing by 2% would reduce the number of cumulative cases by about 18%. These results have implications on the management and policy direction in the early phases of the epidemic.
Subject
  • Quarantine
  • Epidemics
  • Epidemiology
  • Infectious diseases
  • COVID-19
  • Medical hygiene
  • Systems thinking
  • 2019 disasters in China
part of
is abstract of
is hasSource of
Faceted Search & Find service v1.13.91 as of Mar 24 2020


Alternative Linked Data Documents: Sponger | ODE     Content Formats:       RDF       ODATA       Microdata      About   
This material is Open Knowledge   W3C Semantic Web Technology [RDF Data]
OpenLink Virtuoso version 07.20.3229 as of Jul 10 2020, on Linux (x86_64-pc-linux-gnu), Single-Server Edition (94 GB total memory)
Data on this page belongs to its respective rights holders.
Virtuoso Faceted Browser Copyright © 2009-2025 OpenLink Software