About: Inspired with an increasing environmental awareness, we performed an eco-friendly amenable process for the synthesis of silver nanoparticles (AgNPs) using the catkins of Piper longum as an alternative approach with the existing methods of using plant extracts. The fabrication of nanoparticles occurred within 10 minutes. This was initially observed by colour change of the solution. UV–visible spectroscopic studies (UV-Vis) were performed for further confirmation. The analysis elucidated that the surface plasmon resonance (SPR) was specifically corresponding to AgNPs. Fourier transform infrared spectrophotometry (FTIR) studies indicated that polyphenols could possibly be the encapsulating agents. The size and shape of the nanoparticles was analysed using Transmission electron microscopy (TEM). The nanoparticles were predominant spheres ranging between 10 to 42 nm at two different scales. The formation of elemental silver was confirmed further by X-ray photoelectron spectroscopy (XPS) and X-ray powder diffraction (XRD). GC-MS analysis was used to identify the possible encapsulates on the nanoparticles. The antibacterial effect of the biosynthesized AgNPs was tested against two gram-positive (Bacillus cereus and Staphylococcus aureus), and five gram-negative (Escherichia coli, Proteus mirabilis, Klebsiella pneumoniae, Pseudomonas aeruginosa and Salmonella typhi) bacteria. Outcomes of the study suggest that these pathogens were susceptible to the AgNPs. This is the first ever international report on correlating the antibacterial effect of silver nanoparticles using mathematical modelling with a conventional antimicrobial assay. The results indicate that nanoparticles of silver synthesized using catkin extract of P. longum can be exploited towards the development of potential antibacterial agents.   Goto Sponge  NotDistinct  Permalink

An Entity of Type : fabio:Abstract, within Data Space : covidontheweb.inria.fr associated with source document(s)

AttributesValues
type
value
  • Inspired with an increasing environmental awareness, we performed an eco-friendly amenable process for the synthesis of silver nanoparticles (AgNPs) using the catkins of Piper longum as an alternative approach with the existing methods of using plant extracts. The fabrication of nanoparticles occurred within 10 minutes. This was initially observed by colour change of the solution. UV–visible spectroscopic studies (UV-Vis) were performed for further confirmation. The analysis elucidated that the surface plasmon resonance (SPR) was specifically corresponding to AgNPs. Fourier transform infrared spectrophotometry (FTIR) studies indicated that polyphenols could possibly be the encapsulating agents. The size and shape of the nanoparticles was analysed using Transmission electron microscopy (TEM). The nanoparticles were predominant spheres ranging between 10 to 42 nm at two different scales. The formation of elemental silver was confirmed further by X-ray photoelectron spectroscopy (XPS) and X-ray powder diffraction (XRD). GC-MS analysis was used to identify the possible encapsulates on the nanoparticles. The antibacterial effect of the biosynthesized AgNPs was tested against two gram-positive (Bacillus cereus and Staphylococcus aureus), and five gram-negative (Escherichia coli, Proteus mirabilis, Klebsiella pneumoniae, Pseudomonas aeruginosa and Salmonella typhi) bacteria. Outcomes of the study suggest that these pathogens were susceptible to the AgNPs. This is the first ever international report on correlating the antibacterial effect of silver nanoparticles using mathematical modelling with a conventional antimicrobial assay. The results indicate that nanoparticles of silver synthesized using catkin extract of P. longum can be exploited towards the development of potential antibacterial agents.
Subject
  • Silver
  • Chemotherapy
  • Infectious diseases
  • Foodborne illnesses
  • Food safety
  • Bactericides
  • Health disasters
  • Plants used in Ayurveda
  • Taxa named by Carl Linnaeus
  • Plant morphology
  • Indian spices
  • Monoamine oxidase inhibitors
  • Plants described in 1753
  • Spices
  • Flora of the Indian subcontinent
  • Piper (plant)
part of
is abstract of
is hasSource of
Faceted Search & Find service v1.13.91 as of Mar 24 2020


Alternative Linked Data Documents: Sponger | ODE     Content Formats:       RDF       ODATA       Microdata      About   
This material is Open Knowledge   W3C Semantic Web Technology [RDF Data]
OpenLink Virtuoso version 07.20.3229 as of Jul 10 2020, on Linux (x86_64-pc-linux-gnu), Single-Server Edition (94 GB total memory)
Data on this page belongs to its respective rights holders.
Virtuoso Faceted Browser Copyright © 2009-2024 OpenLink Software