AttributesValues
type
value
  • One of the central tools to control the COVID-19 pandemics is the knowledge of its spreading dynamics. Here we develop a fractal model capable of describe this dynamics, in term of daily new cases, and provide quantitative criteria for some predictions. We propose a fractal dynamical model using conformed derivative and fractal time scale. A Burr-XII shaped solution of the fractal-like equation is obtained. The model is tested using data from several countries, showing that a single function is able to describe very different shapes of the outbreak. The diverse behavior of the outbreak on those countries is presented and discussed. Moreover, a criterion to determine the existence of the pandemic peak and a expression to find the time to reach herd immunity are also obtained.
subject
  • Topology
  • Pandemics
  • Computational fields of study
  • Economic problems
  • Mathematical structures
  • Fractals
part of
is abstract of
is hasSource of
Faceted Search & Find service v1.13.91 as of Mar 24 2020


Alternative Linked Data Documents: Sponger | ODE     Content Formats:       RDF       ODATA       Microdata      About   
This material is Open Knowledge   W3C Semantic Web Technology [RDF Data]
OpenLink Virtuoso version 07.20.3229 as of Jul 10 2020, on Linux (x86_64-pc-linux-gnu), Single-Server Edition (94 GB total memory)
Data on this page belongs to its respective rights holders.
Virtuoso Faceted Browser Copyright © 2009-2025 OpenLink Software