About: Epidemiological studies have revealed that the elderly and those with co-morbidities are most susceptible to COVID-19. To understand the genetic link between aging and the risk of COVID-19, we conducted a multi-instrument Mendelian randomization analysis and found that the genetic variation that leads to a longer lifespan is significantly associated with a lower risk of COVID-19 infection. The odds ratio is 0.32 (95% CI: 0.18 to 0.57; P = 1.3 x 10-4) per additional 10 years of life, and 0.62 (95% CI: 0.51 to 0.77; P = 7.2 x 10-6) per unit higher log odds of surviving to the 90th percentile age. On the other hand, there was no association between COVID-19 susceptibility and healthspan (the lifespan free of the top seven age-related morbidities). To examine the relationship at the phenotypic level, we applied various biological aging clock models and detected an association between the biological age acceleration and future incidence and severity of COVID-19 infection for all subjects as well as for the individuals free of chronic disease. Biological age acceleration was also significantly associated with the risk of death in COVID-19 patients. Our findings suggest a causal relationship between aging and COVID-19, defined by genetic variance, the rate of aging, and the burden of chronic diseases.   Goto Sponge  NotDistinct  Permalink

An Entity of Type : fabio:Abstract, within Data Space : covidontheweb.inria.fr associated with source document(s)

AttributesValues
type
value
  • Epidemiological studies have revealed that the elderly and those with co-morbidities are most susceptible to COVID-19. To understand the genetic link between aging and the risk of COVID-19, we conducted a multi-instrument Mendelian randomization analysis and found that the genetic variation that leads to a longer lifespan is significantly associated with a lower risk of COVID-19 infection. The odds ratio is 0.32 (95% CI: 0.18 to 0.57; P = 1.3 x 10-4) per additional 10 years of life, and 0.62 (95% CI: 0.51 to 0.77; P = 7.2 x 10-6) per unit higher log odds of surviving to the 90th percentile age. On the other hand, there was no association between COVID-19 susceptibility and healthspan (the lifespan free of the top seven age-related morbidities). To examine the relationship at the phenotypic level, we applied various biological aging clock models and detected an association between the biological age acceleration and future incidence and severity of COVID-19 infection for all subjects as well as for the individuals free of chronic disease. Biological age acceleration was also significantly associated with the risk of death in COVID-19 patients. Our findings suggest a causal relationship between aging and COVID-19, defined by genetic variance, the rate of aging, and the burden of chronic diseases.
subject
  • Zoonoses
  • Epidemiology
  • Viral respiratory tract infections
  • Senescence
  • COVID-19
  • Classical genetics
  • Occupational safety and health
  • Polymorphism (biology)
part of
is abstract of
is hasSource of
Faceted Search & Find service v1.13.91 as of Mar 24 2020


Alternative Linked Data Documents: Sponger | ODE     Content Formats:       RDF       ODATA       Microdata      About   
This material is Open Knowledge   W3C Semantic Web Technology [RDF Data]
OpenLink Virtuoso version 07.20.3229 as of Jul 10 2020, on Linux (x86_64-pc-linux-gnu), Single-Server Edition (94 GB total memory)
Data on this page belongs to its respective rights holders.
Virtuoso Faceted Browser Copyright © 2009-2025 OpenLink Software